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Gostaria também de agradecer à minha famı́lia e amigos, que sempre me apoiaram e
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RESUMO

O Gerenciamento da Cadeia de Suprimentos é uma das atividades mais importan-
tes e representativas nos custos para empresas de todos os setores da economia, sendo a
área de Armazenagem responsável por uma fração significativa destes custos. Dentro da
operação de um armazém existem diversas atividades e decisões de ńıveis tático e opera-
cional que regem o modo como este funciona, afetando diretamente os custos atrelados
à operação. A atividade identificada pela literatura como a mais custosa e que requer
maior intensidade de mão-de-obra é a Coleta de Pedidos, que envolve as etapas preli-
minares de agrupamento de pedidos e roteamento de coleta, além da coleta dos pedidos
propriamente dita. Além disso, esta atividade é afetada por outras caracteŕısticas do
armazém, como seu layout e a forma como os produtos são distribúıdos neste, definida
pela poĺıtica de alocação de SKUs. Devido ao alto custo relacionado a esta atividade e
sua importância na operação das empresas, diversos métodos e estratégias de otimizá-la
têm sido desenvolvidos, atuando nas diferentes etapas desta. Neste trabalho é analisado
o desempenho, de forma conjunta, de estratégias e métodos heuŕısticos, com foco em
três frentes: Poĺıtica de Alocação de SKUs, Agrupamento de Pedidos e Roteamento de
Coleta. A análise comparativa tem como objetivo resolver o problema de roteamento de
coleta e é conduzida em cenários realistas gerados a partir de parâmetros de mercado e
que buscam retratar diferentes caracteŕısticas de armazéns. Adicionalmente, e de forma
a abordar este problema em outro contexto prático relacionado, esta análise também é
aplicada, de forma adaptada, à coleta de pedidos realizados de maneira online em dois
supermercados, serviço este que teve grande aumento de demanda em virtude da pande-
mia de COVID-19. O aumento repentino da utilização do canal de compras online em
supermercados, causado pelas medidas de restrição de circulação impostas à população,
expôs a ineficiência com a qual a atividade de coleta de pedidos, antes pouco relevante,
era realizada em supermercados. Embora a coleta de itens em um armazém e a coleta de
pedidos em um supermercado aparentem ser atividades bastante diferentes, existem di-
versas semelhanças que permitem a utilização dos métodos originalmente propostos para
a primeira na segunda. Tratando de ambas as frentes de estudo do presente trabalho,
alguns métodos heuŕısticos considerados relevantes foram selecionados da literatura, além
da proposição de um novo método de Roteamento de Coleta, e estes foram implemen-
tados computacionalmente para a realização dos experimentos e análise dos resultados.
As análises permitiram que fosse identificado um método heuŕıstico considerado simples
e eficiente, devido a seu desempenho mais do que satisfatório e sua facilidade formulação
e implementação, podendo assim ser utilizado para obter melhorias operacionais tanto
no contexto de um armazém, como em no contexto de um supermercado. Além disso,
a análise conjunta de métodos destinados às atividades de Alocação de SKUs, Agrupa-
mento de Pedidos e Roteamento de Coleta permitiram um maior entendimento sobre
a integração destas atividades e o desenvolvimento de uma ferramenta recomendativa
voltada ao aumento da eficiência operacional na coleta de pedidos em armazéns.

Palavras-Chave – Armazenagem, Roteamento de Coleta, Agrupamento de Pedidos,
Pesquisa Operacional, Heuŕısticas.



ABSTRACT

Supply Chain Management is one of the most important activities and is tightly
related to any companies cost structure, being Warehousing responsible for a significant
fraction of those costs. Within the operation of a warehouse many activities and decisions
take place, both on tactical and operational level, that control the way the facility works,
directly affecting the operations costs. The Order Picking activity has been identified as
the most expensive and labour-intensive one in Warehousing, comprising the preliminar
phases of Order Batching and Picker Routing, followed by the picking itself. Furthermore,
this activity is affected by other warehouse characteristics, such as the warehouse layout
and the way itens are distributed within the aisles, known as Storage Policy. Due to
the high costs related to it and its importance to companies, several methods and stra-
tegies were developed to optimise the Order Picking activiy, acting in all of its phases.
This study analyses the joint performance of some of the most commom strategies and
methods, focusing on 3 main aspects: Storage Policy, Order Batching and Picker Routing.
The comparative analysis aims at solving the Picking Routing Problem and is conducted
on several reality-based scenarios, created considering market parameters and that seek to
portrait different warehouse settings. Additionally, in order to contemplate a real world
case, the analysis is also applied, in an adapted form, to the picking process for online
grocery shopping in two supermarkets, a service that saw great increase in demand due to
the COVID-19 pandemic and lockdown restrictions. The rapid increase of online grocery
shopping channels, caused by the restricted circulation imposed, exposed the inefficiency
of this, previously not so popular, activity. Although both warehouse and supermarket
picking processes seem to be very different, there are various similarities tha allow the
“translation” from one to the other, such as the aisles layout, the product allocation based
on a determined rule and ultimately the need for operational efficiency. Considering both
analysis presented in this study, relevant heuristic methods were selected from the litera-
ture, together with a proposed new Picker Routing method, and were coded to used on a
series of experiments. The analysis of the results identified a heuristic method considered
simple and efficient, due to its really good results and its simple formulation and imple-
mentation, allowing it to obtain operational gains both on warehouses and supermarkets.
Furthermore, the joint analysis of Storage Policy strategies, Order Batching methods and
Picker Routing methods allowed for a greater understanding of the integration between
these 3 activities and the development of a tool aimed to increase operational efficiency
for warehouse order picking.

Keywords – Warehousing, Picker Routing, Order Batching, Operations Research,
Heuristics.
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18 Pseudocódigo do algoritmo Return . . . . . . . . . . . . . . . . . . . . . . 49

19 Representação de rota realizada seguindo o método Midpoint . . . . . . . 51
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33 Gráficos Fatoriais - Corredores de Cruzamento . . . . . . . . . . . . . . . . 83
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10 Média e Desvio Padrão do Número de Passos por Produto . . . . . . . . . 101



LISTA DE SIGLAS

GCS Gerenciamento da Cadeia de Suprimentos

SKU Stock Keeping Unit

AS/RS Automated Storage and Retrieval System

FCFS First Come, First-Served

SAPS Seleção Aleatória de Pedido Semente
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1 INTRODUÇÃO

Neste caṕıtulo serão discutidos brevemente a temática geral na qual o trabalho se

insere, assim como a motivação para seu desenvolvimento e os principais objetivos deste.

Além disso, este caṕıtulo apresentará a estruturação básica do trabalho.

1.1 Temática

O gerenciamento de uma cadeia de suprimentos, ou uma cadeia loǵıstica, como pode

ser também chamada, é um conceito bastante amplo, sendo definido de diferentes formas

por diversos autores. Handfield e Nichols Jr (1999) apud Ballou (2004) definem cadeia

de suprimentos como a área que abrange todas as atividades relacionadas com o fluxo e

transformação de mercadorias desde o estágio da matéria-prima (extração) até o usuário

final, bem como os respectivos fluxos de informação. O Gerenciamento da Cadeia de

Suprimentos (GCS) é a integração dessas atividades, mediante aperfeiçoamentos entre as

partes da cadeia, com o objetivo de conquistar uma vantagem competitiva sustentável.

Já Mentzer et al. (2001) definem o GCS como “[...] a coordenação estratégica sistemática

das tradicionais funções de negócios e das táticas ao longo dessas funções no âmbito de

uma determinada empresa e através dos negócios no contexto da cadeia de suprimentos,

com o objetivo de aperfeiçoar o desempenho a longo prazo das empresas isoladamente e

da cadeia como um todo”.

Entre definições mais espećıficas e mais complexas, um fator está sempre presente,

que é a estreita correlação entre a cadeia de suprimentos e os negócios de uma empresa,

principalmente relacionadas à obtenção de vantagens competitivas, demonstrando a im-

portância do Gerenciamento da Cadeia de Suprimentos para a estratégia e gestão empre-

sarial. Esta relevância pode ser observada em um estudo de Lierow et al. (2017) realizado

pela consultoria americana Olyver Wyman, no qual compilou informações do American

Productivity & Quality Center (APQC) acerca dos custos da Cadeia de Suprimentos em

diversos setores da economia. Os resultados, ilustrados na Figura 1 a seguir, demonstram

que os custos de uma cadeia de suprimentos podem variar de 10% a 20% da receita de

uma empresa, dependendo do setor de atuação, representando uma parcela significativa

desta.
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Figura 1: Custos de Cadeias de Suprimentos como porcentagem das receitas

Fonte: Adaptado de APQC 2017

Devido à sua complexidade, o GCS foi subdividido em áreas de conhecimento meno-

res, de modo a poder ser simplificado e estudado mais a fundo em todos os seus detalhes.

Dentre estas áreas está a Armazenagem, área que pode chegar a representar 20% dos

custos loǵısticos de uma empresa, segundo estudo realizado em 2004 pela European Lo-

gistics Association (ELA) em parceria com a consultoria americana A.T. Kearney (ELA;

A.T. KEARNEY, 2004). Este percentual tende ao crescimento devido ao aumento da

complexidade das redes loǵısticas com a globalização, elevando ainda mais a importância

da Armazenagem nas empresas nos dias atuais.

A Armazenagem pode ser dividida ainda em diversas atividades, como recebimento,

transporte, separação de ordens, expedição, entre outras, cada uma com sua devida im-

portância (LE-DUC, 2005). Dentre estas, uma das mais importantes e que demandam

maior esforço operacional é a Coleta de Pedidos (FRAZELLE, 2002) apud (OZTURKO-

GLU; HOSER, 2019), constituindo assim a temática central deste trabalho.

Trazendo a Coleta de Pedidos em armazéns para um contexto mais próximo e cotidi-

ano da maioria das pessoas, é posśıvel estabelecer um paralelo entre a atividade de coleta

de pedidos em um armazém e a coleta de produtos em um supermercado. A principal se-

melhança se dá no processo de percorrimento de corredores propriamente dito, sendo esta

a parte de maior esforço por parte do coletor, no caso de um armazém, ou do consumidor,

no caso do supermercado.

Recentemente, antes do ińıcio da pandemia de COVID-19 (OMS, 2020), a atividade
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de coleta de produtos em supermercados era uma tarefa majoritariamente realizada por

clientes, que iam até os estabelecimentos para realizar suas compras. Porém, com o

avanço da pandemia a partir do segundo trimestre de 2020 e as subsequentes restrições

de circulação impostas às populações, a realização de compras online em supermercados

cresceu significativamente (ABCOMM, 2020). Nesta modalidade, a coleta dos itens é feita

por um funcionário do próprio estabelecimento ou por um funcionário terceirizado, sendo

esta uma atividade pouco frequente antes da pandemia.

Segundo dados de pesquisa realizada pelo portal E-Commerce Brasil, no peŕıodo pré-

pandemia menos de 5% das redes independentes de supermercados (pequenos varejistas)

realizavam vendas no formato online, sendo o panorama para grandes redes varejistas não

muito diferente. Além disso, boa parte destas empresas operavam estes canais apenas

para fins estratégicos, devido à baixa lucratividade, representando assim apenas 3% em

média do faturamento das lojas (JUNQUEIRA, 2020).

Porém, devido às medidas de restrição causadas pela pandemia, os padrões de con-

sumo da população têm se alterado bastante, com a realização de compras online em

supermercados se tornando mais populares e sua prática crescendo de 9% para mais de

30% (maior crescimento) dos entrevistados em pesquisa realizada pelo CNDL/SPC, como

observado na Figura 2, comparando 2019 com 2021, e com expectativa de crescimento

adicional no decorrer do ano (ALVARENGA, 2021). Este aumento pode ser verificado

nas estat́ısticas das grandes redes varejistas como o Carrefour, que teve aumento de 377%

em vendas online no segundo trimestre de 2020 (ABRAS, 2020), e o grupo GPA, cujo

faturamento do segmento online passou de 1,5% para quase 7%, segundo relatório da

Compra & Confie (GINAID, 2020a).

Figura 2: Utilização de serviços de compras pela internet

Fonte: Adaptado de (ALVARENGA, 2021)
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Desta forma, os supermercados e as grandes redes varejistas tiveram que adaptar seus

modelos de negócio ao novo cenário, com 75% dos varejistas passando a realizar vendas de

maneira online, segundo levantamento realizado pelo portal InfoVarejo em agosto de 2020

(JUNQUEIRA, 2020). Um dos principais canais utilizados foi o de aplicativos espećıficos

para entrega de alimentos, como Ifood, Uber Eats e Rappi, que firmaram parcerias com

grandes redes varejistas e até com startups estrangeiras (a Uber Eats, por exemplo adquiriu

a startup chilena Cornershop, especialista no setor de E-Grocery), visando o aumento de

produtividade deste “novo” modelo de compras (SALOMAO, 2020).

Entretanto, mesmo com estas parcerias e a evolução do setor no mercado brasileiro,

diversos estabelecimentos, inclusive de grande porte, muitas vezes apresentam sinais de

ineficiência, como prazos de entrega muito longos, sendo este um desafio bastante rele-

vante para um serviço que envolve alimentos e em que os clientes geralmente demandam

rapidez e precisão. Atualmente no Brasil, o processamento dos pedidos é realizado de

forma manual e acontece dentro de supermercados, nos quais os funcionários (do super-

mercado ou da empresa de aplicativo), se deslocam junto aos clientes “comuns” para

realizar a coleta dos itens, podendo tornar o processo bastante ineficiente devido à falta

de planejamento da coleta (GINAID, 2020b).

Desta forma, é posśıvel entender a importância do processo de coleta de pedidos

também no contexto de compras online em supermercados, considerando as recentes mu-

danças no perfil de demanda e os desafios impostos aos estabelecimentos para se adequar

ao novo cenário, que aparenta ter agradado a muitos e que deve se manter pós-pandemia

(INFOVAREJO, 2020). Assim, este será um desdobramento do tema central deste traba-

lho, de modo a aplicar conceitos práticos de armazenagem à uma realidade mais próxima

de todos.

1.2 Objetivos

Os objetivos deste trabalho são:

a) Revisitar e avaliar o desempenho de métodos heuŕısticos de Roteamento de Co-

leta em armazéns, a fim de resolver o problema conhecido como Picker Routing, levando

também em consideração Poĺıticas de Alocação de SKUs (Stock Keeping Unit) e métodos

heuŕısticos de Agrupamento de Pedidos, que são aplicados anteriormente à coleta. Para

isso, serão realizados experimentos em cenários que retratam uma ampla gama de confi-

gurações de armazéns, sendo então posśıvel gerar recomendações dos métodos mais ade-
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quados para cada tipo de armazém, com vistas a proporcionar melhorias operacionais.

b) Avaliar a utilização de métodos heuŕısticos de Roteamento de Coleta no contexto

de coleta de compras online em supermercados, atividade que ganhou maior importância

em decorrência da pandemia de COVID-19. Esta avaliação será baseada em dois casos re-

ais de supermercados, que possuem o serviço de vendas online e tiveram suas distribuições

de produtos mapeadas para o estudo. Assim, será posśıvel entender se existem vantagens

em se utilizar algum destes métodos para esta atividade, comparando o desempenho des-

tes em relação à solução ótima, e com o que seria posśıvel proporcionar treinamentos para

os coletores destes supermercados, visando aumentar a eficiência desta operação.

1.3 Motivações

Analisando-se a literatura atual acerca do tema, observa-se uma grande quantidade

de trabalhos que abordam as diferentes atividades de armazenagem de forma bastante

detalhada, com proposições de modelos de otimização para o problema de Roteamento de

Coleta, utilização de algoritmos para Agrupamento de Pedidos e análises estratégicas de

layout de armazéns. Porém, estes trabalhos em geral abordam estas atividades de forma

isolada, combinando variações destas atividades de forma bastante restritiva e não muito

relacionada. Deste modo, um dos intuitos deste trabalho é desenvolver uma análise mais

abrangente e buscar preencher esta lacuna na literatura, abordando estas atividades de

grande relevância para as empresas.

Além disso, este trabalho é motivado pela interdisciplinaridade dos métodos aplica-

dos à operação dos armazéns, que serão adaptados para o tratamento de casos reais em

dois supermercados, que deram abertura para a realização do estudo. Esta comparação é

posśıvel devido ao aumento do número de pedidos realizados de maneira online em super-

mercados, em decorrência da pandemia de COVID-19. Assim, a coleta de pedidos para

clientes, que era uma atividade pouco comum, tem se tornado cada vez mais relevante na

operação de um supermercado e que precisa ser otimizada.

1.4 Estrutura do Trabalho

Este trabalho está subdividido em seis Caṕıtulos:

a) Caṕıtulo 1 – Introdução: este caṕıtulo apresenta brevemente a temática e a mo-

tivação do trabalho ao leitor, assim como seus principais objetivos e sua estrutura;
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b) Caṕıtulo 2 – Revisão de Literatura: este caṕıtulo apresenta uma revisão bibli-

ográfica acerca dos principais conceitos abordados ao longo do trabalho;

c) Caṕıtulo 3 – Descrição do Problema: o foco deste caṕıtulo é a apresentação em

mais detalhes do problema, assim como a definição do problema a ser tratado no trabalho;

d) Caṕıtulo 4 – Aplicação a Diferentes Configurações de Armazéns: este caṕıtulo tem

como objetivo descrever o delineamento de experimentos e analisar os resultados obtidos

com a aplicação dos métodos apresentados, trazendo uma proposta de recomendação para

o uso destes na prática;

e) Caṕıtulo 5 – Aplicação a Casos Reais de Roteamento de Coleta em Supermerca-

dos: este caṕıtulo tem como foco a coleta de dados e o mapeamento de casos reais de

supermercados operando com vendas online, com a subsequente aplicação dos métodos

de roteamento de coleta e análise dos resultados;

f) Caṕıtulo 6 – Conclusões e Perspectivas Futuras: este caṕıtulo apresenta as con-

clusões finais do trabalho, sintetizando o conteúdo apresentado e os resultados obtidos,

assim como perspectivas mais promissoras para trabalhos futuros.
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2 REVISÃO DE LITERATURA

Com o objetivo de familiarizar o leitor ao tema tratado e construir uma base teórica

para o desenvolvimento do trabalho, neste caṕıtulo serão apresentados as teorias, de-

finições e conceitos, utilizados na elaboração deste.

2.1 Armazenagem

A Armazenagem, de forma bastante simplista, pode ser considerada como a atividade

de gestão de um armazém. Este último, entretanto, não teve ainda sua definição ou

utilidade apresentadas. Segundo Gu, Goetschalckx e McGinnis (2007), um armazém é

parte essencial de uma cadeia de suprimentos, sendo suas principais funções: acomodação

do fluxo de materiais de modo a controlar a variabilidade causada por fatores como

sazonalidade de produção, ou realizar o agrupamento para transporte; consolidação de

produtos de diversos fornecedores para entrega conjunta aos clientes; processos de adição

de valor como kitting (montagem de Kits), customização e embalagem de pedidos.

Lambert, Copper e Pagh (1998) ainda citam economias de transporte, economias de

escala em compra e produção, suporte a programas de Just-In-Time (JIT), oferecimento

de um amplo portfólio de produtos e apoio a processos de loǵıstica reversa como posśıveis

atributos de um armazém.

Segundo Roodbergen e Vis (2009), o fluxo de produção de um armazém pode ser

reduzido a 4 fases principais: Recebimento, Armazenagem, Coleta e Expedição, podendo

cada uma destas ser subdividida em etapas menores. A Figura 3 ilustra estas fases,

destacando o fluxo entre essas e as fronteiras do armazém.
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Figura 3: Funções e fluxos em um armazém

Fonte: Elaborado pelo autor

A fase de Recebimento engloba as atividades de descarregamento de produtos entre-

gues pelo transportador, atualização do controle de estoque (quantidades de cada SKU) e

muitas vezes a inspeção de qualidade e quantidade das entregas (DE KOSTER; LE-DUC;

ROODBERGEN, 2007). SKU é um termo que define um item ou produto de uma em-

presa de forma única, ou seja, o mesmo produto com pequenas diferenças técnicas, como

cor ou tamanho, são considerados SKUs diferentes.

A segunda fase, de Armazenagem, engloba as atividades de definição do local de

armazenagem de um SKU no armazém e a transferência do produto até este local. Esta

fase pode ainda envolver as atividades de adequação de embalagem (repackaging), de

modo a facilitar a armazenagem e futura coleta. Nesta fase, o posicionamento dos SKUs é

feito seguindo um conjunto de regras, chamadas de Poĺıticas de Alocação, que basicamente

definem o local onde um produto será estocado dentro do armazém.

A fase de Coleta, que será abordada profundamente mais adiante, é definida pelo

processo de obtenção da quantidade correta de determinados produtos pertencentes à

um conjunto de pedidos, sendo assim a atividade de maior importância em um armazém

(DE KOSTER; LE-DUC; ROODBERGEN, 2007). Esta fase engloba atividades como

Agrupamento de Pedidos e Roteamento de Coleta, com a segunda fortemente influenciada

pela primeira, visto que o modo como os pedidos são agrupados afeta diretamente o

conjunto e a quantidade de SKUs a serem coletados e, consequentemente, o caminho a

ser percorrido pelo coletor.
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A última fase, de Expedição, engloba as atividades de separação dos itens para os

pedidos individuais (pois foram coletados de forma agrupada), embalagem destes pedidos

e preparação para a entrega. Muitas vezes os pedidos devem ser embalados e agrupados

na unidade de carregamento correta, sendo esta na forma de paletes, caixas ou outra

definida pelo cliente ou modo de transporte.

Deve-se destacar que existem modos de operação de armazéns que não apresentam

todas as fases citadas, tornando o fluxo de materiais mais curto e menos complexo. Um

exemplo disso é a operação de Cross-Docking, na qual os produtos recebidos na pri-

meira fase são enviados diretamente para a fase de Expedição, podendo requerer pequenos

serviços de separação e adequação de embalagem, mas sendo necessárias poucas ou ne-

nhuma ação de coleta (DE KOSTER; LE-DUC; ROODBERGEN, 2007). Desta forma, o

tempo despendido pelos itens no armazém é bastante reduzido, assim como as atividades

e esforços aplicados na operação.

Como Azadnia et al. (2013) apud de Koster, van der Poort e Wolters (1999) definem, os

armazéns são uma parte vital do sistema loǵıstico de uma empresa e a otimização de suas

operações é essencial para a estratégia desta, de forma a entregar mercadorias rapidamente

e com o menor custo posśıvel. Para isso ocorrer, as atividades de armazenagem precisam

estar coordenadas entre si e alinhadas às caracteŕısticas de cada armazém.

A caracterização de um armazém pode ser feita de diversas formas, Gu, Goetschalckx

e McGinnis (2007) separam estas caracteŕısticas em duas classes: Design do Armazém

e Operação do Armazém. A primeira trata de questões como layout, dimensionamento,

seleção de equipamentos e grau de mecanização, ao passo que a segunda engloba as carac-

teŕısticas e estratégias a serem usadas em atividades como Chegada de Pedidos, Alocação

de SKUs, Agrupamento de Pedidos, Roteamento de Coleta, entre outras.

Nas duas seções seguintes estas classes e seus conteúdos serão abordados em maior

detalhe, com o aprofundamento adicional necessário em itens de maior importância ao

trabalho.

2.2 Design de Armazéns

Um armazém pode ser configurado de diversas formas, porém sua estrutura e elemen-

tos básicos são sempre bastante semelhantes. A Figura 4 ilustra a estrutura genérica de

um armazém, apresentando em detalhes apenas a área de estoque, que é o departamento

em foco neste trabalho. Os componentes desta figura são detalhados ao longo desta seção.
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O layout de um armazém é o que define onde cada área deste (e.g. estoque, recebi-

mento, expedição) está localizada e é elaborado de acordo com a correlação de atividades

entre departamentos. O layout ainda define as caracteŕısticas internas de cada área, como

o número de blocos, largura e comprimento de corredores, presença ou não de Corredores

de Cruzamento na área de estoque (DE KOSTER; LE-DUC; ROODBERGEN, 2007).

Figura 4: Modelo geral da estrutura de um armazém

Fonte: Adaptado de Valle, Beasley e Cunha (2017)

Na Figura 4, Corredores são os espaços de circulação nos quais se têm acesso às

posições-palete, percorrendo todo o comprimento do armazém. Os Corredores podem

ser subdivididos em Sub-corredores, como é retratado na Figura citada. Os corredores

orientados verticalmente no modelo são chamados de Corredores de Cruzamento, pois são

perpendiculares aos corredores onde ocorre a coleta de itens. Deve-se destacar que as

posições-palete não podem ser acessadas por Corredores de Cruzamento.

Um armazém “t́ıpico” não possui espaço inutilizado (seja este espaço destinado à

estoque ou movimentação) e consiste em corredores paralelos. Blocos são separados por

Corredores de Cruzamento, delimitando-os. Dentro de cada bloco estão localizadas as

posições de armazenagem, representadas pela numeração de 1 a 100 na Figura 4. Todo

armazém possui pelo menos dois Corredores de Cruzamento, um ao final e outro no ińıcio

de seus corredores. Corredores possuem posições de armazenagem em ambos os lados e

cada posição armazena apenas um tipo de produto (SKU) (VALLE; BEASLEY; CUNHA,

2017).
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Outro aspecto de armazéns retratado na Figura 4 são os pontos de Origem e Destino,

também referenciados como Depot. O ponto de Origem determina o local de onde o coletor

de pedidos inicia sua rota de coleta e o ponto de Destino determina o local onde o coletor

termina esta rota, após ter coletado todos os itens em sua lista de pedidos. Estes pontos

podem estar localizados de forma a estarem próximos à áreas espećıficas, de modo a

agilizar etapas anteriores ou posteriores à coleta. Os pontos de Origem e Destino, porém,

também podem ser coincidentes, ou seja, a rota de coleta tem ińıcio e término no mesmo

local. Neste trabalho será considerado o último cenário, sendo o ponto Origem/Destino

referenciado como ponto O/D.

Ademais, o modelo ilustrado na Figura 4 é bastante comum e é conhecido como

two-block warehouse, possuindo um Corredor de Cruzamento exatamente no meio do

armazém, dividindo este em 2 grupos de blocos. Isto aumenta o número de oportunidades

para coletores trocarem de corredores e percorrerem distâncias menores, porém diminui

o número de posições-palete no armazém e devem ser consideradas as maiores distâncias

precorridas nos Corredores de Cruzamento (OZTURKOGLU; HOSER, 2019).

Ampliando a definição anterior, as posições de armazenagem, também chamadas de

posições-palete, são espaços dedicados à armazenagem que podem alocar o volume equi-

valente a um palete, e devem ser usados para a armazenagem de apenas um SKU por

vez. Dependendo da Poĺıtica de Armazenagem do armazém, uma posição-palete pode

ser reservada exclusivamente para um SKU, sendo mantida vazia quando não existem

unidades deste produto estocadas, e não podendo ser ocupada por qualquer outro SKU

que chegue ao armazém.

Desta forma, um bloco em um armazém possui diversas posições-palete, que também

se estendem na direção vertical (do chão ao teto), formando uma “coluna” desses e que

tipicamente, mas não obrigatoriamente, contém o mesmo SKU ao longo de sua altura. A

Figura 5 ilustra estes conceitos.
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Figura 5: Ilustração de Blocos, Posições-palete e Colunas em um armazém

Fonte: Elaborado pelo autor

As áreas de um armazém são normalmente definidas de acordo com suas funções,

sendo comumente separadas em três: 1) Recebimento, 2) Estoque e 3) Expedição, de

modo a agrupar de certa forma as fases do fluxo de armazenagem já descritas na Seção

2.1. Intuitivamente, as fases de Recebimento e Expedição são realizadas nas áreas com os

respectivos nomes, e as fases de Armazenagem e Coleta ocorrem na área de Estoque, que

ocupa grande parte do espaço de um armazém (Figura 3).

Tratando do ńıvel de mecanização e automatização de um armazém, as principais

decisões estão relacionadas ao processo de coleta de pedidos e como este será realizado,

pois, segundo Coyle, Bardi e Langley (2003), os custos desta operação podem chegar à

65% dos custos de um armazém. Este processo pode ser dividido entre coleta realizada

de forma manual ou por máquinas (mecanizada).

Segundo de Koster, Le-Duc e Roodbergen (2007), mesmo com os avanços tecnológicos,

a coleta feita de forma manual ainda é usada em mais de 80% dos armazéns na Europa,

devido à sua flexibilidade. Mais recentemente, os relatórios de Michel (2018) e Michel

(2020) demonstram que, mesmo com aumento de investimentos em automatização, há

aumento também em tecnologias de apoio à coleta manual (voice-to-light, RF-based, light-

driven) e investimentos em mão de obra, indicando que a relevância do modelo manual

ainda é grande.

Assim, o presente trabalho engloba apenas a coleta realizada de forma manual e,
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neste contexto, os sistemas de coleta são agrupados em três diferentes classes: 1) Picker-

to-Parts, 2) Parts-to-Picker e 3) Put Systems.

Na primeira classe, o coletor caminha ou dirige pelos corredores do armazém e coleta os

itens pertencentes aos pedidos, alocando-os em um véıculo de transporte ou cesta. Ainda

dentro deste grupo é posśıvel distinguir decisões de zoneamento de coleta, separação de

pedidos pelo coletor (e não pela área de Expedição), entre outros fatores.

No sistema Parts-to-Picker, os SKUs, normalmente estocados em unidades maiores

(e.g. paletes, caixas), são trazidos para uma área espećıfica para que seja realizada a co-

leta de itens individuais ou em quantidades menores e depois retornam ao estoque. Este

sistema envolve a utilização de um “Sistema de Estoque e Coleta” (AS/RS - Automated

Storage and Retrieval System), que são equipamentos como elevadores, guindastes e car-

rosséis que transportam os SKUs pelo armazém. A Figura 6 ilustra um Guindaste (a) e

um Carrossel Horizontal (b) como exemplos de AS/RS.

Outra caracteŕıstica relacionada ao sistema Parts-to-Picker é o Ciclo de Comando,

que pode ser único ou duplo. No modo único o AS/RS transporta apenas um SKU por

viagem, ao passo que, no modo duplo, um SKU é levado da área de coleta de volta à sua

posição de estoque e, ao retornar, já recolhe outro SKU para direcioná-lo à área de coleta.

Figura 6: Guindaste (a) e Carrossel Horizontal (b)

Fonte: Curley (2016)

Por fim, em um armazém que utiliza o Put System, primeiramente os itens são cole-

tados utilizando um dos métodos anteriores e depois são oferecidos à um funcionário que

os distribui nos pedidos de diferentes clientes. Este sistema é utilizado comumente em

situações de necessidade de muitos pedidos terem de ser preparados em pouco tempo (DE

KOSTER; LE-DUC; ROODBERGEN, 2007).
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2.3 Operação do Armazém

Após a definição do Design do Armazém, as caracteŕısticas das atividades de ńıvel ope-

racional, decididas e realizadas rotineiramente, devem ser definidas de forma a adequarem-

se às caracteŕısticas do design adotado e estarem coordenadas entre si.

Segundo o modelo de complexidade proposto por Goetschalckx e Ashayeri (1989), as

5 principais decisões a ńıvel operacional de um armazém são: 1) Roteamento de Coleta,

2) Poĺıtica de Alocação de SKUs, 3) Agrupamento de Pedidos, 4) Zoneamento e 5) Modo

de Liberação de Ordens. As três primeiras, foco deste trabalho, são apresentadas em mais

detalhes nas sub-seções mais adiante.

Tratando de Zoneamento, esta decisão envolve a separação, ou não, do armazém em

zonas de coleta, na quais apenas determinados coletores podem realizar a coleta de itens.

Esta decisão pode resultar em menores distâncias de coleta devido à área menor que

cada coletor é autorizado a percorrer, entretanto há de se considerar o esforço maior na

separação para expedição de pedidos, visto que itens de um mesmo pedido podem ser cole-

tados por diferentes funcionários. Ademais, existe também uma complexidade na definição

das zonas para equilibrar a demanda de coleta entre estas (GU; GOETSCHALCKX; MC-

GINNIS, 2007). O presente trabalho abordará armazéns sem zoneamento.

Acerca do Modo de Liberação de Ordens, esta decisão diz respeito ao modo como os

pedidos são separados para agrupamento e roteamento de coleta. Os modos de liberação

mais comuns são o Discreto (wave-picking), no qual existe um corte na chegada de pedidos

e todos os pedidos realizados antes deste corte são tratados juntos para as decisões seguin-

tes; e o Cont́ınuo, no qual os pedidos que chegam podem avançar para as fases seguintes

a qualquer momento, muitas vezes atualizando em tempo real decisões já tomadas para

outros pedidos. No presente trabalho será abordado apenas o modo Discreto de liberação

de pedidos.

2.4 Poĺıtica de Alocação de SKUs

Uma poĺıtica de alocação é um conjunto de regras que pode ser usado para designar

posições de estoque aos produtos em um armazém. Porém, antes da definição destas

regras, é necessário tomar uma decisão acerca de quais atividades serão realizadas em

determinadas áreas do armazém (DE KOSTER; LE-DUC; ROODBERGEN, 2007).

Alguns armazéns possuem uma área conhecida como Forward Area, ou área de coleta
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avançada, que é um espaço mais próximo ao ponto O/D que concentra os SKUs com maior

demanda na sua menor forma (caixas ou unidades), aumentando assim a eficiência na

coleta destes. Porém, a implementação destas áreas deve ser feita de forma cuidadosa, pois

afeta as distâncias de coleta dos outros SKUs e envolve um novo problema de reposição

interna, aumentando assim a complexidade da operação do armazém.

Tratando das regras mais comuns de alocação de SKUs, é posśıvel dividi-las em três

principais categorias: 1) Poĺıticas de Alocação Aleatória, 2) Poĺıticas de Alocação por

Classes e 3) Poĺıticas de Alocação por Famı́lia de Produtos. Estas serão apresentadas em

mais detalhes adiante.

2.4.1 Alocação Aleatória

Embora o conceito de aleatoriedade pareça bem simples, existem maneiras diferen-

tes de alocar aleatoriamente SKUs em um armazém. A mais básica de todas direciona

cada palete que chega ao armazém para uma posição-palete livre de forma completa-

mente aleatória. Segundo Choe e Sharp (1991), este método de alocação resulta em uma

alta utilização de espaço no armazém, mas aumenta as distâncias das rotas de coleta

posteriormente.

A segunda forma, conhecida como closest open location storage, aloca cada SKU que

chega ao armazém na primeira posição vazia que encontrar, mas sem nenhum critério

estabelecido. Esta regra resulta em um armazém com mais posições-palete ocupadas

próximas à entrada do armazém e mais posições-palete vazias próximas à sáıda.

A terceira forma é conhecida como Alocação Dedicada e, embora pareça que exista

uma regra por trás desta, a Alocação Dedicada apenas define que certa posição-palete

pertence à determinado SKU, mesmo que não haja unidades deste. Desta forma, caso um

palete chegue ao armazém, este deve ser direcionado à sua posição, mesmo que existam

posições vazias mais próximas. Esta forma de alocação, porém, não possui critério para

determinação de cada posição dedicada, dáı sua condição de aleatoriedade.

2.4.2 Alocação por Classes

As Poĺıticas de Alocação por Classes se baseiam em um conceito bastante comum

no controle de estoques, chamado de método de Pareto, que divide os SKUs em classes

baseadas nas frequências de demanda. Para alocação de SKUs, esta “popularidade” pode

ser medida por um ı́ndice baseado na demanda simples de um item ou na demanda ponde-
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rada pelo volume ocupado ou receita obtida (DE KOSTER; LE-DUC; ROODBERGEN,

2007).

Uma derivação comum do método de Pareto é a Curva ABC, que faz a classificação de

Pareto em três grupos, representados pelas letras A, B e C. Na Curva ABC, a classe A é

composta por 20% dos SKUs mais populares (maior demanda), englobando cerca de 80%

da demanda total. A classe B é composta pelos 30% dos SKUs seguintes, englobando 15%

da demanda total e, por fim, a classe C engloba os 50% dos SKUs restantes, e representa

apenas 5% da demanda total (FMS, 2019).

Após a classificação dos SKUs em classes A, B e C (mais classes podem ser con-

sideradas), os representantes da Classe A são alocados nas posições mais próximas ao

ponto O/D, de modo a reduzir a distância média de viagens que são realizadas com muita

frequência. Dentro desta área dedicada à classe A, os SKUs são estocados de forma

aleatória. O mesmo prinćıpio se aplica às outras classes sucessivamente, sendo os itens da

Classe B alocados nas posições mais próximas ao ponto O/D não ocupadas por itens da

Classe A e assim por diante.

O que diferencia as Poĺıticas de Alocação por Classes entre si são as diferentes con-

figurações de posicionamento das classes definidas. As duas mais populares, conhecidas

como within-aisle e across-aisle são apresentadas na Figura 7. Alguns trabalhos, como Pe-

tersen e Schmenner (1999) e Le-Duc (2005) discutem o desempenho destas configurações

em combinação com métodos de roteamento de coleta e afirmam que a segunda possui

resultados melhores de forma geral.

Figura 7: Ilustração dos dois modos mais comuns de Alocação por Classes

Fonte: Adaptado de van Gils et al. (2018)
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Os percentuais na legenda da Figura 7 representam a quantidade de posições-palete

englobadas em cada uma das classes e que, por serem números inteiros, podem não ser

divididas na proporção exata de 20%/30%/50% apresentado na Curva ABC.

2.4.3 Alocação por Famı́lia de Produtos

A Poĺıtica de Alocação por Famı́lia de Produtos diferencia-se das apresentadas até

o momento pois considera um fator importante em armazéns: as relações de demanda

entre itens, ou seja, a frequência com que SKUs estão presentes no mesmo pedido. Desta

forma, a alocação por famı́lia de produtos define que produtos com alta correlação sejam

estocados próximos uns dos outros (DE KOSTER; LE-DUC; ROODBERGEN, 2007). A

literatura divide as Poĺıticas de Alocação por Famı́lia de Produtos em dois métodos: 1)

Complementary-Based e 2) Contact-Based.

O primeiro método, mais simples, possui duas fases. A primeira fase utiliza correlação

estat́ıstica para separar itens em grupos a partir de suas demandas correlacionadas, ao

passo que a segunda fase aloca os itens na posições do armazém de forma que pedidos

com alta correlação estejam o mais próximos posśıvel (WASCHER, 2004).

Para a primeira fase, Rosenwein (1994) demonstra que é posśıvel tratar a criação

do grupo de pedidos como um problema de P-Medianas, isto é, um problema que visa

minimizar a distância média (neste caso entre itens) ponderada por um ı́ndice de cor-

relação entre estes. Já para a segunda fase, existe um consenso de alocar os grupos de

maior demanda mais próximos ao ponto O/D e os de menor demanda mais distantes (DE

KOSTER; LE-DUC; ROODBERGEN, 2007).

O segundo método, Contact-Based, assemelha-se ao anterior por também dividir os

itens em grupos, mas utiliza como critério a “frequência de contato”, definida como a

frequência com que um item i é coletado após um item j, ou vice-versa. Porém, como a

ordem de coleta depende diretamente da estratégia de roteamento escolhida, este método

se torna estreitamente ligado ao problema de roteamento (a ser apresentado em detalhes

mais adiante), o que torna sua aplicação bastante complexa (WASCHER, 2004).

2.5 Agrupamento de Pedidos

A atividade de Agrupamento de Pedidos também possui grande importância na operação

de um armazém, pois se relaciona estreitamente a diversas outras atividades, em parti-

cular com o próprio Roteamento de Coleta. Estudado e analisado de diversas formas, o
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Problema de Agrupamento de Pedidos (Order Batching Problem) visa minimizar o tempo

total de processamento de pedidos ao agrupá-los em lotes que se traduzam de forma

otimizada para a atividade seguinte, a coleta (ZUNIGA et al., 2015).

Gademann e van de Velde (2005) demonstraram que o Problema de Agrupamento de

Pedidos objetivando a minimização da distância percorrida é NP-dif́ıcil até para instâncias

simples com mais de dois pedidos a serem agrupados, evidenciando a complexidade deste

problema.

Desta forma, de modo a simplificar o processo de agrupamento de pedidos, tornando-o

mais ágil e adequado às restrições de tempo de um armazém moderno, diversos métodos

foram desenvolvidos, envolvendo estratégias de agrupamento, métodos heuŕısticos e pro-

gramação dinâmica, variando em complexidade e desempenho entre si. Petersen (1997),

de Koster, Le-Duc e Roodbergen (2007) e Gu, Goetschalckx e McGinnis (2007) são alguns

autores que apresentam literatura acerca do tema.

Segundo de Koster, van der Poort e Wolters (1999), métodos heuŕısticos utilizados

para agrupar pedidos podem ser divididos em três grupos principais:

(1) Métodos Simples e Diretos

(2) Seed Algorithms

(3) Saving Algorithms

Antes de maior detalhamento e de modo a auxiliar na melhor compreensão dos

métodos descritos anteriormente, o cenário fict́ıcio apresentado na Figura 8 foi criado.

Este cenário possui pedidos numerados de 1 à 7 (por ordem de chegada), e cada um

destes pedidos possui um número definido de itens, variando de 1 à 6. Os números nas

posições indicam a qual pedido cada item pertence e considera-se que a capacidade do

coletor é de 8 itens (maior que qualquer pedido individual).
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Figura 8: Cenário fict́ıcio de itens pertencentes a diferentes pedidos

Fonte: Adaptado de de Koster, van der Poort e Wolters (1999)

2.5.1 Métodos Simples

Estes métodos agrupam pedidos de formas bastante diretas e intuitivas, sendo mui-

tas vezes considerados senso comum e frequentemente usados na prática devido à esta

praticidade de aplicação (DE KOSTER; VAN DER POORT; WOLTERS, 1999).

O principal destes métodos (e o único deste tipo a ser explorado no presente trabalho)

é o First-Come First-Served (FCFS), que agrupa os pedidos de acordo com sua ordem de

chegada. O FCFS funciona da seguinte forma: adicionam-se pedidos a um lote de forma

sequencial até que o lote ultrapasse a capacidade do coletor, neste momento conclui-se o

lote em aberto e inicia-se a construção de um novo lote, sempre de forma sequencial.

Considerando o cenário da Figura 8, o passo-a-passo do agrupamento de pedidos pelo

método FCFS é representado na Figura 9.
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Figura 9: Passo-a-passo do agrupamento de pedidos pelo método FCFS

Fonte: Elaborado pelo Autor

Desta forma, cada um dos lotes {1}; {2}; {3,4}; {5,6} e {7} será coletado como um

pedido único, ou seja, os itens dos pedidos 3 e 4, por exemplo, serão coletados na mesma

rota, de forma conjunta. O agrupamento, então, influencia na futura definição de rotas

de coleta.

2.5.2 Seed Algorithms

Os Seed Algorithms ou (algoritmos semente) são utilizados devido à sua natureza

simples e por sua capacidade de apresentar resultados de agrupamento com boa qualidade.

Estes algoritmos são compostos por duas etapas principais: a Seleção de Semente e a

Adição de Ordem (DOS SANTOS; MUNARI, 2017).

A etapa de Seleção de Semente consiste na definição de qual pedido dará ińıcio a um

novo lote, ou seja, será o primeiro a ser adicionado neste. Na segunda etapa, de Adição

de Ordem, é definido, em cada iteração, um novo pedido a ser adicionado ao lote em

aberto até isto não ser mais posśıvel, momento que este lote é fechado e se inicia outro. É

importante destacar que, no presente trabalho, pedidos são adicionados de forma integral

à lotes, não podendo ser fracionados.
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Para cada uma destas etapas existem diferentes regras que podem ser aplicadas, re-

sultando em sementes diferentes na primeira etapa e sequências de adição diferentes na

segunda etapa. Desta forma, a combinação de regras nas etapas descritas resulta em

diferentes agrupamentos de pedidos e, consequentemente, diferentes roteiros de coleta na

etapa seguinte do fluxo do armazém.

A Figura 10 ilustra, de forma mais detalhada, as etapas de aplicação de um algoritmo

semente genérico, ou seja, sem a definição das regras de seleção de semente e adição de

ordens.

Figura 10: Fluxograma de um algoritmo semente genérico

Fonte: Adaptado de Ho, Su e Shi (2008)

• Seleção de Semente

Tratando das regras de seleção de semente, estas podem ser desenvolvidas de duas

formas: o modo singular, no qual a semente é escolhida apenas uma vez e mantida ao

longo da construção do lote, e o modo cumulativo, no qual a semente é renovada toda

vez que um novo pedido é adicionado ao agrupamento (a semente se torna a combinação

de todos os pedidos adicionados ao lote até aquele momento) (DE KOSTER; VAN DER

POORT; WOLTERS, 1999). O modo cumulativo apresenta desempenho melhor do que

o modo singular na construção de agrupamento de pedidos (HO; SU; SHI, 2008).
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A seguir são apresentadas algumas regras de seleção de semente mais comuns, listadas

em ordem crescente de complexidade de aplicação. Estas são apresentadas em de Koster,

van der Poort e Wolters (1999). As que serão utilizadas no presente trabalho são descritas

em mais detalhes.

(1) SELEÇÃO ALEATÓRIA DE PEDIDO SEMENTE (SAPS)

Esta regra, como o próprio nome descreve, define a seleção do“pedido semente” de

forma aleatória, ou seja, escolhe-se um pedido qualquer dentre todas as opções dispońıveis

para agrupamento. Esta regra pode ser usada como referência para outras, de modo a

desconsiderar as que tenham desempenho abaixo desta.

(2) MAIOR NÚMERO DE LOCAIS DE COLETA (MNLC)

Esta regra, proposta por Pan e Liu (1995), se baseia na quantidade de itens a

serem coletados por pedido, ou seja, quantos locais de coleta precisam ser visitados. A

regra MNLC define que o “pedido semente” será, dentre os pedidos dispońıveis para

agrupamento, o que possuir o maior número de locais a serem visitados. Em caso de

empate entre pedidos com o maior número de locais de coleta, define-se aleatoriamente

entre estes qual será a semente. No cenário apresentado na Figura 8, o “pedido semente”

seria o pedido 2 (6 locais de coleta) usando a regra MNLC.

(3) MAIOR NÚMERO DE CORREDORES DE COLETA (MNCC)

Esta regra, assim como a anterior, se baseia na distribuição dos itens de cada pedido.

A regra MNCC define que o “pedido semente” será, dentre os pedidos dispońıveis para

agrupamento, o que apresentar o maior número de corredores a serem visitados. Em

caso de empate entre pedidos com o maior número de corredores de coleta, define-se

aleatoriamente entre estes qual será a semente. No cenário apresentado na Figura 8, o

“pedido semente” seria escolhido aleatoriamente entre os pedidos 1, 2 e 6 (4 corredores

de coleta) usando a regra MNCC.

(4) MAIOR AMPLITUDE DE CORREDORES DE COLETA (MACC)

Para esta regra, define-se amplitude de corredores como a diferença máxima entre

dois corredores que possuem itens a serem coletados, ou seja, a diferença, em número de

corredores, entre o corredor mais distante e o mais próximo de O/D que possuem itens

para coleta. A regra MACC calcula esta amplitude para todos os pedidos dispońıveis para

agrupamento e define o que possui maior amplitude como “pedido semente”. Em caso

de empate entre pedidos com a maior amplitude de corredores, define-se aleatoriamente

entre estes qual será o pedido semente. No cenário apresentado na Figura 8, o “pedido
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semente” seria escolhido aleatoriamente entre os pedidos 2 e 3 (6 corredores de amplitude)

usando a regra MACC.

(5) MAIOR SOMA PONDERADA DE CORREDORES DE COLETA (MSPCC)

Nesta regra é necessário calcular, para cada pedido dispońıvel para agrupamento,

a soma dos ı́ndices de seus corredores, baseado na distância destes ao ponto O/D. O

primeiro corredor (mais próximo de O/D), possui peso 1, o seguinte peso 2 e assim su-

cessivamente até o corredor mais distante. O pedido com a maior soma ponderada é

selecionado como “pedido semente”. Em caso de empate entre pedidos com a maior soma

ponderada, define-se aleatoriamente entre estes qual será a semente. No cenário apresen-

tado na figura 8, o “pedido semente” seria o pedido 1, com soma ponderada igual a 19

((0x1)+(1x2)+(0x3)+(1x4)+(0x5)+(1x6)+(1x7)) usando a regra MSPCC.

Para as regras apresentadas acima, com exceção da primeira, é posśıvel reverter o

sentido da regra trocando “Maior” por “Menor” na definição destas, o que criaria novas

regras também utilizadas na prática. Porém, segundo Wolters (1996) apud de Koster,

van der Poort e Wolters (1999), regras com definições como “Maior”, “Maior número” e

“Mais longa” superam suas correspondentes com definições “Menor”, “Menor número” e

“Menos longa”.

Outras regras de seleção de semente, como “Maior Soma Ponderada Exponencial de

Corredores de Coleta”, “Maior Distância Média da Origem” e “Maior Área Retangular de

Coleta”, apresentadas em Ho e Tseng (2006), não serão abordadas no presente trabalho

devido à sua natureza mais complexa, o que dificulta o processamento destas regras de

forma direta.

• Adição de Ordem

Tratando das regras de adição de ordem, novamente existem diversas regras baseadas

em distância, área ocupada, número de pedidos e relação com o pedido semente, cada

uma com sua complexidade de aplicação.

A seguir são apresentadas algumas destas regras, listadas em ordem crescente de

complexidade e com maior detalhamento para as utilizadas no trabalho. Porém, deve-se

destacar que devido à capacidade de coleta e à presença prévia do “pedido semente”, os

pedidos dispońıveis para agrupamento serão aqueles que não extrapolem a capacidade do

coletor ao serem adicionados ao lote.

(1) SELEÇÃO ALEATÓRIA DE PEDIDO ACOMPANHANTE (SAPA)
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Assim como a SAPS, esta regra apenas adiciona um pedido aleatoriamente dentre

os pedidos dispońıveis para agrupamento no lote e é utilizada como referência para outras

regras.

(2) MAIOR NÚMERO DE ITENS IDÊNTICOS (MNII)

Esta regra define que o pedido a ser adicionado ao lote é o que possui o maior

número de itens idênticos aos presentes na semente (HO; SU; SHI, 2008).

(3) MENOR NÚMERO DE CORREDORES ADICIONAIS (MNCA)

Esta regra, considerada bastante simples, foi proposta por Rosenwein (1996) e define

o pedido a ser adicionado ao lote como o que adiciona, em relação à semente, o menor

número de corredores a serem percorridos na coleta.

(4) REGRA DO PEDIDO SEMENTE (RPS)

Proposta inicialmente por Gibson e Sharp (1992), esta regra adiciona o pedido,

dentre os dispońıveis, cuja soma das distâncias entre cada item do pedido semente e o

item mais próximo do pedido candidato seja a menor (DE KOSTER; VAN DER POORT;

WOLTERS, 1999). É necessário destacar que estas distâncias são calculadas pela diferença

no ı́ndice dos corredores, ou seja, um item no corredor i e um item no corredor j possuem

distância de || (i− j) || corredores, independente de suas posições dentro dos corredores.

(5) REGRA DO PEDIDO CANDIDATO (RPC)

Proposta inicialmente por Pan e Liu (1995), esta regra funciona de maneira inversa

à anterior, pois adiciona o pedido, dentre os dispońıveis, cuja soma das distâncias entre

cada item deste e o item mais próximo do pedido semente seja a menor (DE KOSTER;

VAN DER POORT; WOLTERS, 1999). Novamente, as distâncias são calculadas pela

diferença no ı́ndice dos corredores.

(6) REGRA DO CENTRO DE GRAVIDADE (RCG)

Esta regra, também proposta por Rosenwein (1996) adiciona o pedido cujo cen-

tro de gravidade possui a menor distância do centro de gravidade do pedido semente.

O centro de gravidade, dos candidatos e da semente, é calculado pela ponderação dos

ı́ndices dos corredores pelo número de itens a serem coletados nestes. Para ilustrar este

cálculo, no cenário apresentado na Figura 8, o centro de gravidade do pedido 1, por

exemplo, seria: (1x0)+(2x1)+(3x0)+(4x1)+(5x0)+(6x1)+(7x1)/4 = 4,75 e do pedido 2:

(1x1)+(2x0)+(3x2)+(4x1)+(5x0)+(6x0)+(7x2)/6 = 4,16.

Para todas estas regras, com exceção da primeira, caso haja empate entre dois ou
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mais pedidos candidatos, seleciona-se o que possuir o maior número de itens a serem

coletados. A razão para isto é a maior facilidade de adição de pedidos menores ao lote

em um momento mais à frente na construção deste (DE KOSTER; VAN DER POORT;

WOLTERS, 1999).

2.5.3 Savings Algorithm

O Savings Algorithm ou Algoritmo de Economias foi proposto para o Problema de

Roteamento de Véıculos com Capacidade (PRVC) abordado por Clarke e Wright (1964),

que obtém reduções nas distâncias totais de viagem ao agrupar rotas únicas em conjuntos

de rotas maiores. Sua variedade mais clássica é baseada em 5 passos, descritos a seguir,

já de forma adaptada ao contexto de Agrupamento de Pedidos.

Considere inicialmente o conjunto N, cujos componentes são pedidos a serem agrupa-

dos. Considere também os pares (i,j ) de pedidos contidos em N cujas somas de itens de

i e j não exceda a capacidade do coletor, que é conhecida. Os agrupamentos (ou lotes)

representam os pedidos que serão coletados em uma mesma rota.

O parâmetro di representa a distância da rota de coleta do pedido i e o parâmetro dij

representa a distância de coleta do par de pedidos (i,j ) de forma conjunta, ou seja, em

uma única rota (desta forma dij = dji). O parâmetro sij representa a economia de distância

obtida ao agrupar os pedidos i e j em uma mesma rota de coleta, em comparação às rotas

de coleta individuais destes.

A utilização deste método para o Agrupamentos de Pedidos requer o cálculo das

distâncias de coleta de cada pedido, o que, além de aumentar a complexidade do método,

depende da estratégia de roteamento escolhida. Para fins de simplicidade, o método de

roteamento comumente escolhido para o cálculo das distâncias usadas no Algoritmo de

Economias é o Traversal (a ser apresentado mais adiante).

Passo 1 - Calcule a economia sij para todas as combinações (i,j ) de pedidos em N. A

economia é calculada por sij = di + dj - dij, ou seja, a distância para coletar apenas o

pedido i mais a distância para coletar apenas o pedido j menos a distância para coletar

os dois de forma conjunta.

Passo 2 - Ordene as economias com valores positivos em ordem decrescente.

Passo 3 - Selecione o par (i,j ) com a maior economia. Em caso de empate, selecione

aleatoriamente um par.
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Passo 4 - Caso ambos os pedidos do par selecionado ainda não estejam em nenhum

lote, aloque-os juntos em novo lote. Caso apenas um dos pedidos do par selecionado já

esteja em um lote e se a capacidade deste lote permitir a adição de ambos os pedidos

do par selecionado, adicione-os a este lote. Caso ambos os pedidos já estejam alocados

em lotes, e a capacidade permitir, faça a junção dos lotes. Em qualquer outro caso, não

adicione nenhum dos pedido a lotes.

Passo 5 - Retorne para a lista de economias e selecione o próximo par de pedidos. Caso

todos os pares tenham sido analisados, mas nem todos os pedidos tenham sido alocados

em lotes, aloque cada um dos pedidos restantes em lotes próprios.

Considerando o cenário da Figura 8, o passo-a-passo do agrupamento de pedidos

utilizando o Savings Algorithm é representado na Figura 11.

Figura 11: Passo-a-passo do agrupamento de pedidos utilizando o Savings Algorithm

Fonte: Elaborado pelo autor

Neste cenário, os agrupamentos formados são: {1}; {2,7}; {3,5} e {4,6}, e cada um

destes será coletado como um pedido único.

Algumas variações do Algoritmo de Economias, desenvolvidas por Clarke e Wright

(1964) e Elsayed e Unay (1989), também levam em conta aspectos como a limitação do

número de lotes, novo cálculo das distâncias a cada iteração do algoritmo e separação de



40

pedidos por tamanho (DE KOSTER; VAN DER POORT; WOLTERS, 1999). Porém,

estas apresentam complexidade muito elevada para serem aplicadas de forma prática e

rápida, mesmo podendo produzir soluções de agrupamento melhores para a etapa seguinte

de roteamento de coleta.

2.6 Roteamento de Coleta

O roteamento de coleta pode ser definido como a escolha do caminho a ser percorrido

por um ou mais funcionários para realizar a coleta dos itens presentes em um pedido ou

conjunto de pedidos, caracteŕısticas que dependem do tipo de coleta e tipo de agrupa-

mento de pedidos propostos pelo armazém. O tempo despendido nesta operação pode ser

elevado, visto que um pedido pode conter dezenas de itens, localizados nas mais diversas

posições de estoque do armazém. Como pode ser visto na Figura 12, o tempo despendido

para se movimentar entre posições de estoque representa aproximadamente metade do

tempo de trabalho de um coletor (TOMPKINS et al., 2003).

Figura 12: Percentual de tempo gasto em cada atividade de um coletor de pedidos

Fonte: Adaptado de Tompkins et al. (2003)

Para sistemas de coleta no modelo Picker-to-Parts o tempo de viagem é diretamente

proporcional à distância percorrida pelo coletor, o que implica no roteamento de coleta

ser um dos fatores principais a serem tratados pela gestão com o objetivo de reduzi-lo

ao máximo (PETERSEN; SCHMENNER, 1999). A decisão está no âmbito da utilização

de métodos exatos ou métodos heuŕısticos, devido à complexidade do problema, que é
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apresentado com mais detalhes a seguir.

O problema de definição da rota de um coletor através de um armazém é comumente

definido como uma variação do clássico Problema do Caixeiro Viajante (Travelling Sales-

man Problem - TSP), que teve sua forma geral estudada a partir dos anos 1930. Porém,

este problema é considerado NP-Dif́ıcil, assim como suas variações (MASAE; GLOCK;

GROSSE, 2020). Neste contexto, NP-Dif́ıcil pode ser definido como um problema que não

pode ser resolvido em tempo polinomial, ou seja, o tempo para encontrar uma solução

aumenta muito com o aumento do número de itens em um pedido, neste caso.

Na formulação clássica do TSP o problema pode ser descrito como um vendedor, que

inicia uma viagem partindo de sua cidade, tendo que visitar um determinado número de

cidades exatamente uma única vez e retornar para sua cidade. As distâncias entre todas

as cidades são conhecidas e o vendedor precisa determinar a ordem para visitá-las de modo

que a distância total percorrida seja mı́nima (DE KOSTER; LE-DUC; ROODBERGEN,

2007).

Para a formulação de um TSP comumente se assume um grafo completo GTSP =

(N, A) (SCHOLZ et al., 2016). Neste grafo G, N é o conjunto de nós correspondente ao

depósito (nó 0) mais os clientes (nós 1,...,n), e A, o conjunto de arcos (k,l) conectando

pares de nós. Seja ckl o custo (ou a distância/tempo) do coletor ir diretamente do nó k para

o nó l, tal que (k,l) ∈ A, e seja Dk a demanda requerida pelo cliente k, tal que k ∈ N\{0}
(JUNQUEIRA, 2013). Note que o parâmetro Dk só é necessário para problemas com

véıculo/coletor com limite de capacidade.

Considerando o grafo descrito anteriormente, a formulação de Miller, Tucker e Zemlin

(1960) apud Scholz et al. (2016), utiliza as seguintes variáveis:

xkl =

{
1, caso o arco (k,l) esteja contido no roteiro,

0, caso contrário

hk : posição do nó k no roteiro, k ∈ N\{0}

Deste modo, o TSP pode ser representado da seguinte forma:

min
∑
(k,l)

ckl . xkl (2.1)
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∑
k∈N

xkl = 1 ∀l ∈ N (2.2)

∑
l∈N

xkl = 1 ∀k ∈ N (2.3)

hk − hl + (n+ 1)xkl ≤ n ∀(k, l) ∈ A : k, l 6= 0 (2.4)

xkl ∈ {0, 1} ∀(k, l) ∈ A (2.5)

hk ≥ 0 ∀k ∈ N\{0} (2.6)

A Função Objetivo (2.1) minimiza o custo total do roteiro, sendo este custo a distância

ou o tempo. As restrições (2.2) e (2.3) garantem que cada nó é visitado exatamente uma

vez. As restrições (2.4) excluem a possibilidade de sub-roteiros ao garantir que a posição

do nó k no roteiro é menor do que a posição do nó l caso o arco (k,l) seja usado (SCHOLZ

et al., 2016). Ademais, as restrições (2.5) e (2.6) definem os domı́nios das variáveis de

decisão, sendo xkl binária e hk maior ou igual que 0.

Porém, em um armazém com layout em bloco, o coletor de pedidos não consegue

prosseguir diretamente da localização de um item para outra se estas estiverem em cor-

redores diferentes. Em vez disso, é necessário utilizar um corredor de cruzamento para

mudar de um corredor para outro. Este aspecto é negligenciado na formulação clássica

do TSP, na qual é assumido um grafo completo. Isto é considerado de forma expĺıcita,

entretanto, em formulações de Steiner TSP (STSP) (SCHOLZ et al., 2016).

O STSP é um problema de roteamento em nós sem restrições de capacidade que

busca o roteiro de menor custo que visite um conjunto conhecido de locais com demanda

de serviço, localizados nos vértices de uma determinada rede. O STSP estende a in-

terpretação do TSP de duas formas: 1) A rede de caminhos entre pontos pode não ser

completa, ou seja, podem existir pontos não conectados diretamente entre si, e 2) Alguns

pontos da rede podem não ter demanda, ou seja, não precisam ser visitados. Mesmo

assim, alguns vértices sem demanda devem ser acessados a fim de conectar dois vértices

com demanda em um roteiro (RODRIGUEZ-PEREIRA et al., 2019).

Embora algumas formulações iniciais do STSP tenham sido desenvolvidas nos anos
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1980, Letchford, Nasiri e Theis (2013) foram os primeiros à introduzir uma formulação

alternativa, adaptando diversas formulações de TSP e STSP (RODRIGUEZ-PEREIRA

et al., 2019). O problema a ser tratado no presente trabalho encaixa-se muito bem nesta

formulação, a ser apresentada adiante. Entretanto, nesta nova formulação, além de xkl e

hk, uma terceira variável, wkl
q , é necessária e é proveniente de uma formulação de Claus

(1984). A variável inteira wkl
q define o número de unidades da commodity q passando

diretamente do vértice k para o nó l, (k,l) ∈ A, q ∈ N\{0}. Seu uso e adaptação ao

contexto de coleta em um armazém serão detalhados mais adiante.

Ademais, é preciso apresentar o conceito de “nós de Steiner” (Steiner points), que são

os pontos do roteiro que não precisam ser visitados obrigatoriamente. Define-se então o

subconjunto P de N, em que os elementos de P são nós que devem ser visitados pelo menos

uma vez e N \P são nós de Steiner (BURKARD; DENEKO; WOEGINGER, 1998). Como

o conjunto de arcos do STSP também difere do conjunto de arcos A do TSP apresentado

anteriormente, este será indicado como Ã para esta formulação do STSP. A formulação é

dada a seguir:

min
∑

(k,l)∈Ã

ckl . xkl (2.7)

∑
l∈N :(k,l)∈Ã

xkl ≥ 1 ∀k ∈ P (2.8)

∑
l∈N :(k,l)∈Ã

xkl −
∑

l∈N :(l,k)∈Ã

xlk = 0 ∀k ∈ N (2.9)

∑
l∈N :(l,0)∈Ã

wl0
q −

∑
l∈N :(0,l)∈Ã

w0l
q = −1 ∀q ∈ N\(P ∪ {0}) (2.10)

∑
l∈N :(l,q)∈Ã

wlq
q −

∑
l∈N :(q,l)∈Ã

wql
q = 1 ∀q ∈ N\(P ∪ {0}) (2.11)

∑
l∈N :(k,l)∈Ã

wkl
q −

∑
l∈N :(l,k)∈Ã

wlk
q = 0 ∀k ∈ N\{0}, q ∈ N\(P ∪ {0, k}) (2.12)

wkl
q ≤ xkl ∀(k, l) ∈ Ã, q ∈ N\(P ∪ {0}) (2.13)
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xkl ∈ {0, 1} ∀(k, l) ∈ Ã (2.14)

wkl
q ≥ 0 ∀(k, l) ∈ Ã, q ∈ N\(P ∪ {0}) (2.15)

A Função Objetivo (2.7) é definida da mesma maneira que a do modelo anterior,

visando a minimização do custo total do roteiro. As restrições (2.8) garantem que cada

nó que não corresponde a um Steiner Point é visitado pelo menos uma vez, pois é um

ponto que possui demanda e desta forma precisa ser visitado, podendo ser mais de uma

vez. As restrições (2.9) garantem que o número de chegadas em um nó (indegree) é igual

ao número de sáıdas (outdegree) deste.

As restrições (2.10) garantem que cada commodity q saia do depósito e chegue a um

nó, ao passo que as restrições (2.11) garantem que cada nó receba exatamente apenas uma

commodity (SCHOLZ et al., 2016). Na formulação do STSP, as commodities são tratadas

como produtos diferentes a serem entregues em pontos diferentes, mas, no contexto de

um armazém, é considerada apenas uma commodity, que é a “passagem do coletor por

um nó”, visto que este não está entregando nada, apenas sua presença nestes locais é

necessária.

As restrições (2.12) garantem que as commodities possam sair de nós que não sejam

seu destino final (nós de Steiner), sendo interpretada no contexto de um armazém como

a garantia de que o coletor é livre para mover-se por todos os nós do grafo (SCHOLZ et

al., 2016). Além disso, as restrições (2.13) garantem que só pode haver um transporte

de commodity entre dois nós caso este nó seja utilizado no roteiro. Por fim, as restrições

(2.14) e (2.15) definem as caracteŕısticas das variáveis do problema, sendo a primeira uma

variável binária e a segunda uma variável maior que zero.

No STSP relacionado ao contexto de um armazém, um fator importante é a capacidade

do coletor, que não aparece nesta formulação. Entretanto, é posśıvel considerar que todos

os pedidos feitos são menores ou iguais à capacidade do coletor por viagem, algo que pode

já ser garantido na etapa anterior de agrupamento de pedidos, eliminando a necessidade

desta restrição adicional.

A Figura 13 apresenta um grafo bastante simples ilustrando a formulação de um

STSP, possuindo nós numerados de 1 à 12 e 22 arcos ligando pares de nós. Os “custos”

(ou distâncias/tempos) de cada arco estão definidos pelo valor acima de cada um e as

demandas de cada nó aparecem entre parênteses abaixo da numeração destes. É necessário
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destacar que, como descrito na formulação do STSP, podem não existir arcos para ligar

todos os pares de nós e estes últimos, por sua vez, podem não possuir demanda (Steiner

Points), estando nesta figura coloridos de cinza.

Figura 13: Grafo ilustrativo de um Steiner TSP

Fonte: Adaptado de Rivlin (2018)

A Figura 14 ilustra um grafo, como o apresentado na Figura 13, no contexto de um

armazém, sendo os pontos pretos os locais a serem obrigatoriamente visitados (ćırculos

azuis no grafo) e os pontos de Steiner são os pontos brancos (ćırculos cinza no grafo)

necessários para conectar dois pontos a serem visitados pelo coletor no roteiro. Deve-se

atentar à necessidade de incluir os pontos de Origem e Destino, ou alternativamente o

ponto O/D, no conjunto de pontos obrigatoriamente visitados.
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Figura 14: Ilustração de um STSP no contexto de um armazém

Fonte: Adaptado de Valle, Beasley e Cunha (2017)

Como já citado anteriormente, a formulação do STSP é um problema NP-Hard é só

consegue ser resolvido otimamente em tempo polinomial para situações bastante simples,

com poucas variáveis e restrições. Esta limitação levou ao desenvolvimento de uma vasta

literatura relacionando o STSP à algoritmos e métodos heuŕısticos, de modo a obter

soluções mais rapidamente e de forma mais intuitiva (memorização mais simples de regras

de roteamento por parte dos coletores).

Desta forma, a seguir serão apresentadas heuŕısticas e estratégias práticas de rotea-

mento, propostas por Hall (1993), Petersen (1997) e Roodbergen e de Koster (2001). É

importante notar que as versões a seguir são exclusivas para aplicação no modelo mais

simples de armazém, que contém apenas um bloco e dois corredores de cruzamento, um

em cada extremidade do bloco. Porém, adaptações destes métodos para aplicação em

armazéns com mais de um bloco existem e serão apresentadas mais adiante.

Como padrão, os pontos de Origem e Destino estão localizados no mesmo local e em

um dos vértices do armazém. Os corredores de cruzamento mais próximo e mais distante

do ponto O/D serão identificados como “frontal” e “posterior”, respectivamente.
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2.6.1 Traversal ou S-Shape

O primeiro método, proposto por Goetschalckx e Ratliff (1988) e apresentado na

Figura 15, é conhecido como Traversal ou S-Shape e possui uma formulação bastante

simples: o coletor inicia sua rota partindo do ponto O/D e desloca-se pelo corredor de

cruzamento frontal até o acesso do primeiro corredor com itens a serem coletados. Ao

chegar neste corredor, o coletor percorre-o por inteiro, independentemente do número

de itens a serem coletados neste e de suas posições, deslocando-se ao acesso do próximo

corredor com demanda.

Este processo se repete até o penúltimo corredor com itens a serem coletados, momento

no qual o coletor desloca-se para o acesso ao último corredor com demanda e executa uma

estratégia um pouco diferente. Caso esteja no corredor de cruzamento posterior, o coletor

atravessa o corredor por inteiro e, caso esteja no corredor de cruzamento frontal, vai até o

último item a ser coletado e retorna a este corredor de cruzamento pelo mesmo caminho.

Em ambos os casos, o coletor retorna ao ponto O/D pelo corredor de cruzamento frontal.

Utilizando esta estratégia, corredores sem demanda não são visitados e corredores com

demanda são percorridos apenas uma vez, podendo ser acessados por ambos os corredores

de cruzamento.

A Figura 15 a seguir retrata a coleta de itens em um armazém com apenas um bloco,

utilizando o método Traversal.

Figura 15: Representação de rota realizada seguindo o método Traversal

Fonte: Elaborado pelo autor
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O algoritmo do método Traversal pode ser descrito na forma de um pseudocódigo,

como na Figura 16 a seguir:

Figura 16: Pseudocódigo do algoritmo Traversal

Fonte: Elaborado pelo autor

2.6.2 Return

O método Return, proposto por Petersen (1997) e apresentado na Figura 17, também

possui uma abordagem bastante simples. Neste método, assim como no Traversal, o

coletor inicia a rota no ponto O/D e desloca-se até o acesso do corredor com demanda

mais próximo. A partir deste momento, para cada corredor com itens a serem coletados,

o coletor ingressa e sai do corredor pelo corredor de cruzamento frontal, percorrendo a

distância de ida e volta até o último item a ser coletado neste corredor.

Deve-se destacar que, ao coletar os itens do último corredor com demanda, o coletor

retorna ao ponto O/D pelo corredor de cruzamento frontal. Ao utilizar este método,

corredores sem demanda não são visitados e corredores com demanda são percorridos

apenas uma vez, além de serem acessados apenas por um corredor de cruzamento.

A Figura 17 retrata a coleta de itens em um armazém com apenas um bloco utilizando

o método Return.
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Figura 17: Representação de rota realizada seguindo o método Return

Fonte: Elaborado pelo autor

O algoritmo do método Return pode ser descrito na forma de um pseudocódigo, como

na Figura 18 a seguir:

Figura 18: Pseudocódigo do algoritmo Return

Fonte: Elaborado pelo autor
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2.6.3 Midpoint

O método Midpoint, proposto por Hall (1993), apresenta um pouco mais de comple-

xidade quando comparado aos anteriores. Neste método define-se uma “fronteira” que

divide os corredores exatamente ao meio, separando o armazém no lado “posterior” e

“frontal”, como ilustrado na Figura 19. Além disso, as regras de coleta não se aplicam

a todos os corredores da mesma maneira, sendo o primeiro e o último corredores com

demanda tratados de forma diferenciada.

Iniciando a rota no ponto O/D, o coletor desloca-se até o acesso do corredor com

demanda mais próximo e, neste momento, caso existam itens a serem coletados (em

qualquer corredor) na parte “posterior” do armazém, o coletor atravessa este corredor

por inteiro. Estando no corredor de cruzamento posterior, o coletor avança até o próximo

corredor com demanda deste lado e percorre este corredor até o último item antes da

“fronteira” definida e retorna pelo mesmo caminho. Este processo se repete até o último

corredor com demanda, o qual o coletor percorre por inteiro.

Estando de volta no corredor de cruzamento frontal, no acesso ao último corredor com

itens, inicia-se o retorno ao ponto O/D. Nesta parte da rota, o coletor acessa os corredores

com itens a serem coletados no lado “frontal” (antes da “fronteira”), percorrendo-o até

este item e voltando ao corredor de cruzamento pelo mesmo caminho. Isto se repete até

não existirem mais corredores com demanda e o coletor retorna ao ponto O/D.

Assim, diferentemente dos métodos Traversal e Return, o método Midpoint permite

que um corredor seja visitado duas vezes e acessado por ambos os corredores de cruza-

mento. No caso de apenas existirem itens a serem coletado no lado “frontal”, o método

Midpoint é idêntico ao Return, pois só é necessário o acesso aos corredores por um lado

do armazém.

A Figura 19 retrata a coleta de itens em um armazém com apenas um bloco utilizando

o método de Midpoint, com uma fronteira dividindo o armazém entre os lados “Frontal”

e “Posterior”.
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Figura 19: Representação de rota realizada seguindo o método Midpoint

Fonte: Elaborado pelo autor

O algoritmo do método Midpoint pode ser descrito na forma de um pseudocódigo,

como na Figura 20 a seguir:
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Figura 20: Pseudocódigo do algoritmo Midpoint

Fonte: Elaborado pelo autor

2.6.4 Largest Gap

O método Largest Gap, ou Maior Intervalo, também proposto por Hall (1993), assemelha-

se de certa forma ao método anterior quanto ao acesso aos corredores, mas possui uma

preparação mais complexa. Neste método, para cada corredor com demanda, é definida

uma seção deste que não pode ser percorrida na coleta, chamada de “maior intervalo”,

como ilustrado na Figura 21. O “maior intervalo” é definido pela maior distância, sem

itens a serem coletados, entre dois itens ou entre um item e a extremidade do corredor
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mais próxima deste.

Da mesma forma que os outros métodos, inicia-se a rota no ponto O/D e desloca-se

até o acesso do corredor com demanda mais próximo. Neste momento, caso existam itens

(em qualquer corredor) que só podem ser acessados pelo corredor de cruzamento poste-

rior devido aos “maiores intervalos”, o coletor percorre o primeiro corredor por inteiro,

ignorando o “maior intervalo” deste.

Estando do lado “posterior”, o coletor percorre o corredor de cruzamento posterior

acessando os corredores com demanda, deslocando-se até o último item antes do “maior

intervalo” deste corredor e retornando pelo mesmo caminho ao corredor de cruzamento.

Este processo se repete até o último corredor com demanda, que é percorrido por inteiro,

ou seja, ignora-se o ´´maior intervalo” deste.

Estando de volta no corredor de cruzamento frontal, no acesso ao último corredor

com itens, inicia-se o retorno ao ponto O/D, assim como no método Midpoint. Nesta

parte da rota, o coletor acessa os corredores com itens ainda a serem coletados e percorre

estes até o último item antes do “maior intervalo”, voltando ao corredor de cruzamento

pelo mesmo caminho. Isto se repete até não existirem mais corredores com demanda e o

coletor retorna ao ponto O/D.

Da mesma forma que no método Midpoint, caso todos os itens possam ser coletados

acessando os corredores pelo corredor de cruzamento frontal, o método Largest Gap é

idêntico ao Return. Além disso, caso um corredor possua dois intervalos de mesmo ta-

manho e que sejam os maiores, define-se aleatoriamente apenas um destes como o “maior

intervalo”.

A Figura 21 retrata a coleta de itens em um armazém com apenas um bloco utili-

zando o método Largest Gap, com o maior intervalo sendo evidenciado com uma textura

hachurada.
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Figura 21: Representação de rota realizada seguindo o método Largest Gap

Fonte: Elaborado pelo autor

Deve-se destacar neste exemplo a necessidade de acesso ao lado “distante” do ar-

mazém, de modo que o primeiro e último corredores são isentos da regra do maior in-

tervalo. Além disso, no segundo corredor (de cima para baixo) há dois intervalos com

tamanhos iguais, sendo também os maiores (5 unidades) e apenas um deles foi conside-

rado como o intervalo proibido.

O algoritmo do método Largest Gap pode ser descrito na forma de um pseudocódigo,

como na Figura 22 a seguir:
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Figura 22: Pseudocódigo do algoritmo Largest Gap

Fonte: Elaborado pelo autor

2.6.5 Composite ou Combinado

O método Composite, elaborado por Petersen (1995), é uma estratégia de roteamento

que combina duas já apresentadas anteriormente, Traversal e Return. Neste método, o

coletor possui as alternativas de percorrer o corredor por inteiro ou retornar pelo mesmo

caminho que veio após coletar os itens neste, sendo a decisão feita com base na distância
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para coleta dos itens mais distantes de dois corredores adjacentes (MASAE; GLOCK;

GROSSE, 2020).

Neste método, cada corredor que contenha itens é visitado exatamente uma vez e

acessado apenas por um corredor de cruzamento. Este método é o mais complexo e,

consequentemente, o menos intuitivo, a ser apresentado neste trabalho, pois faz uso de

Programação Dinâmica para construção das rotas (ROODBERGEN; DE KOSTER, 2001).

Para a aplicação do método, é definido que o coletor inicia sua rota no ponto O/D e

desloca-se até o corredor mais próximo que possui itens a serem coletados (identificado

como l) e termina no corredor mais distante que possui itens a serem coletados (identifi-

cado como r). Ainda é definido Lj
x o sub-roteiro que visita todos os pontos de coleta nos

corredores desde o corredor l até o corredor j, por meio da classe de sub-roteiros x, que

pode ser “p” (posterior) ou “f” (frontal).

As classes de sub-roteiros diferenciam-se pelo ponto em que estes terminam, ou seja,

em qual corredor de cruzamento o coletor estará ao final do corredor j. Mais detalhes

sobre estas classes são apresentados a seguir.

Lj
p - sub-roteiro que termina no corredor de cruzamento posterior

Lj
f - sub-roteiro que termina no corredor de cruzamento frontal

Na construção dos sub-roteiros Lj
x existem dois tipos de movimentos, sendo o primeiro

o deslocamento de coleta, ou seja, “dentro” de um corredor, e o segundo o deslocamento

entre corredores consecutivos, ou seja, aquele feito pelos corredores de cruzamento. Para

cada um destes tipos de movimentos existem modos de realizá-los, que serão apresentados

a seguir.

Tratando do primeiro movimento, este pode ser realizado de quatro formas diferentes:

t1 - coletor atravessa completamente o corredor

t2 - coletor não entra no corredor

t3 - coletor entra e sai do corredor pelo corredor de cruzamento frontal

t4 - coletor entra e sai do corredor pelo corredor de cruzamento posterior

Deve-se destacar que t2 só pode ser utilizada caso o corredor em questão não possua

itens a serem coletados (ROODBERGEN; DE KOSTER, 2001).

Já para o segundo movimento, existem apenas duas formas de realizá-lo:

tp - coletor percorre a distância entre os corredores pelo corredor de
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cruzamento posterior

tf - coletor percorre a distância entre os corredores pelo corredor de

cruzamento frontal

Com os modos de realizar cada movimento do sub-roteiro, o método Composite

constrói o roteiro de forma dinâmica, selecionando a melhor opção (menor distância/tempo)

de sub-roteiro a cada corredor até incluir todos os corredores com demanda, obtendo o

sub-roteiro final (ou roteiro completo) Lr
f. A Programação Dinâmica é realizada da se-

guinte forma:

Passo 1 - Definição Inicial

Partindo do corredor j, defina Ll
p = t1 e Ll

f = t3. Ao fazer isso, definem-se os sub-

roteiros para percorrer o primeiro corredor com demanda, sendo Ll
p o deslocamento por

toda a extensão do corredor (t1) e Ll
f o deslocamento até o último item e o retorno ao

corredor de cruzamento frontal (t3) ;

Passo 2 - Iterações

Para cada corredor posterior à l e anterior à r (l + 1 ≤ j ≤ r − 1), determine Lj
p e Lj

f

da seguinte maneira:

Se o corredor j possui itens a serem coletados:

Lj
p = min(Lj-1

p + tp+ t4 ; Lj-1
f + tf+ t1)

Lj
f = min(Lj-1

f + tf+ t3 ; Lj-1
p + tp+ t1)

Estas expressões definem, ao final do corredor j, os sub-roteiros de menor distância

até o momento (inclui corredores antes de j ) que terminam, respectivamente, no corredor

de cruzamento posterior e no corredor de cruzamento frontal. Cada termo dentro dos

parênteses representa o melhor sub-roteiro do corredor anterior mais um movimento de

percorrimento de corredor e um movimento de deslocamento entre corredores, de forma

a resultar na conclusão do lado “p” ou “f” do corredor.

Caso j não possua itens a serem coletados:

Lj
p = Lj-1

p + tp

Lj
f = Lj-1

f + tf

Estas expressões apenas retratam o movimento entre corredores pelo corredor de

cruzamento posterior e frontal, respectivamente.
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Passo 3 - Conclusão

Para o último corredor r determine apenas Lr
f da mesma forma como no Passo 2,

obtendo assim o roteiro completo de coleta. Note que não é necessário calcular Lr
p pois o

corredor r é o último com demanda e o roteiro precisa terminar no corredor de cruzamento

frontal, impedindo o coletor de utilizar este sub-roteiro (ROODBERGEN; DE KOSTER,

2001).

Ao concluir os passos descritos, a distância do roteiro de coleta é definida por Lr
f mais

a distância entre o acesso frontal do corredor l e o ponto O/D, mais a distância entre o

acesso frontal do corredor r e o ponto O/D.

A Figura 23 retrata a coleta de itens em um armazém com apenas um bloco utilizando

o método Composite.

Figura 23: Representação de rota realizada seguindo o método Composite

Fonte: Elaborado pelo autor

Este método possui resultados consistentemente melhores que os anteriores em di-

versas situações, entretanto, como citado anteriormente, é muito mais elaborado e desta

forma muito mais complexo de ser entendido e aplicado por um coletor em seu trabalho

diário. Desta forma, um novo método, baseado neste, é proposto no presente trabalho e

será chamado de Composite*, mantendo as caracteŕısticas de combinação entre os métodos

Traversal e Return, mas excluindo a complexidade da Programação Dinâmica.
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2.6.6 Composite* ou Combinado*

Como comentado na seção anterior, o método Composite* é definido de forma bas-

tante semelhante ao Composite original, sendo também baseado nos métodos Traversal e

Return. Diferentemente dos métodos Midpoint e Largest Gap, no Composite* cada cor-

redor com demanda é acessado apenas uma vez e pode ser percorrido de forma integral,

como ilustrado na Figura 24.

Iniciando no ponto O/D, o coletor desloca-se até o acesso do corredor com demanda

mais próximo, possuindo neste momento duas opções: 1) Atravessar o corredor por in-

teiro coletando todos os itens neste e 2) Entrar no corredor, avançar até o item mais

distante neste e retornar pelo mesmo caminho, saindo pela extremidade por onde entrou.

Independentemente da decisão, o coletor estará em um dos corredores de cruzamento e

avançará até o acesso do próximo corredor com demanda.

A decisão entre as opções 1 e 2 é definida pela distância percorrida até o corredor de

cruzamento após a coleta dos itens, que deve ser a menor entre as duas. Isto se repete

até o penúltimo corredor com demanda, pois o último corredor é percorrido por inteiro

caso o coletor esteja no lado “posterior” e, caso contrário, é percorrido apenas até o item

mais distante. Em ambos os casos, o coletor retorna ao ponto O/D pelo corredor de

cruzamento frontal.

A Figura 24 retrata a coleta de itens em um armazém com apenas um bloco utilizando

o método Composite*.
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Figura 24: Representação de rota realizada seguindo o método Composite*

Fonte: Elaborado pelo autor

Ao comparar os roteiros definidos pelos métodos Composite e Composite*, percebe-se

que o primeiro possui uma solução melhor, pois a distância total percorrida é menor. Isto

ocorre devido a uma pequena diferença no roteiro (penúltimo e último corredores), pois o

método Composite, ao utilizar Programação Dinâmica, identifica que, mesmo percorrendo

uma distância maior no penúltimo corredor, este roteiro será mais curto ao considerar o

resultado final.

O algoritmo do método Composite* pode ser descrito na forma de um pseudocódigo,

como na Figura 25 a seguir:
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Figura 25: Pseudocódigo do algoritmo Composite*

Fonte: Elaborado pelo autor

2.6.7 Adaptações a Armazéns com Mais de um Bloco

Como comentado anteriormente, os métodos apresentados até agora, da forma como

foram descritos, são exclusivos para aplicação em um armazém com apenas um bloco.

Porém, existem adaptações relativamente simples, apresentadas em Masae, Glock e Grosse

(2020) e van Gils et al. (2018), que permitem a utilização destes em armazéns com

múltiplos blocos. A Figura 26, que representa um armazém com três blocos e roteamento

seguindo o método Traversal, auxilia na compreensão destas adaptações.
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Figura 26: Exemplo de rota de coleta e um armazém com mais de um bloco

Fonte: Elaborado pelo autor

A primeira adaptação a ser considerada é o tratamento independente de cada bloco,

ou seja, os métodos são aplicados em um bloco do armazém por vez, iniciando-se sempre

pelo bloco mais distante de O/D e terminando no mais próximo. Desta forma, as regras de

percorrimento de corredores são aplicadas aos sub-corredores de cada bloco e o Corredor

de Cruzamento frontal de um bloco será o Corredor de Cruzamento posterior do bloco a

ser coletado em sequência. Na Figura 26, a rota de cada bloco é destacada com uma cor

diferente.

A segunda adaptação define que, para a sub-rota de cada bloco, o ponto de Origem

e Destino do coletor não precisam ser o mesmo, visto que não há necessidade de iniciar

e concluir esta sub-rota no mesmo ponto para cada bloco individualmente, apenas a rota

“geral” que envolve todos os blocos precisa iniciar e terminar no ponto O/D. Os pontos

de Origem e Destino das sub-rotas serão definidos como O’ e D’, respectivamente, sendo

o ponto D’ de um bloco o ponto O’ do bloco a ser coletado em sequência.

Por fim, a terceira adaptação diz respeito à movimentação de volta para o primeiro

bloco de coleta. Nos métodos para um único bloco, a coleta inicia-se sempre pelo corredor

mais próximo de O/D que possui itens a serem coletados. No caso de múltiplos blocos,

o coletor se desloca para o ponto O’ do bloco mais distante pelo primeiro corredor que

possua itens, considerando todos os blocos. Neste deslocamento, caso existam itens a

serem coletados nos sub-corredores em que o coletor passa, estes itens já são coletados,

sendo esta caracteŕıstica ilustrada na Figura 26 pela rota na cor preta.
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Embora a Figura 26 ilustre a aplicação do método Traversal, estas adaptações também

se aplicam a todos os métodos de roteamento de coleta apresentados anteriormente.
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3 DESCRIÇÃO DO PROBLEMA

Com o objetivo de introduzir o problema tratado no trabalho ao leitor e caracterizá-lo

de forma mais detalhada, neste caṕıtulo serão apresentadas as definições e delimitações

do problema.

3.1 Apresentação do Problema

Como descrito anteriormente, este trabalho tem como objetivo geral a resolução do

Problema de Roteamento de Coleta, seja em um armazém ou no caso adaptado de su-

permercados. No primeiro caso, discutido no caṕıtulo 4, o problema engloba também

as atividades de Alocação de SKUs e Agrupamento de Pedidos, ao passo que o segundo

caso, discutido no caṕıtulo 5, considera apenas a atividade de Roteamento de Coleta. Em

ambos os casos, a escolha por analisar apenas métodos simples se dá por sua simplicidade

de aplicação e baixa necessidade computacional, o que permite uma utilização mais ampla

destes na prática.

Para o primeiro caso, os cenários criados levam em conta algumas das principais

caracteŕısticas de armazéns e que podem afetar de forma relevante o desempenho, de

forma individual ou combinada, dos métodos a serem considerados. A Figura 27 ilustra,

de forma simples, a relação das atividades tratadas e sua relação com o problema. As

caracteŕısticas do armazém, provenientes das decisões estratégicas e de fatores externos

à empresa, funcionam como inputs de informações para as Atividades de Armazenagem,

que por sua vez possuem relações entre si, e que afetam o resultado do indicador avaliado,

a distância percorrida, e, consequentemente, o tempo despendido pelo coletor.
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Figura 27: Relação entre caracteŕısticas de um Armazém e Atividades de Armazenagem

Fonte: Elaborado pelo autor

• Caracteŕısticas do Armazém

Como retratado na Figura 27, existem diversas caracteŕısticas que definem um ar-

mazém e sua operação. Estes fatores serão considerados para a construção dos cenários

a serem avaliados, posteriormente, utilizando os métodos propostos para cada uma das

Atividades de Armazenagem descritas.

Fatores como Número de Corredores, Número de posições-palete e Layout do Ar-

mazém envolvem a forma com que o armazém foi projetado e constrúıdo, definindo ca-

racteŕısticas como o comprimento e largura do armazém, presença ou não de uma Área

de Coleta Avançada, número de Corredores de Cruzamento e posicionamento do ponto

O/D. As decisões envolvidas na definição destes fatores são consideradas estratégicas e

requerem muito esforço e investimento para serem alteradas, tornando os fatores citados

como definitivos em um armazém.

Por outro lado, os dois fatores relacionados ao tamanho dos pedidos (“Número de itens

por pedido” e “Variedade do tamanho dos pedidos”) não são definidos pelo armazém,

e sim pelo mercado, e por isso podem variar ao longo do tempo, cabendo à empresa

adequar sua operação a estas mudanças. É posśıvel que uma empresa receba apenas

pedidos com muitos itens ou o oposto, ou que receba pedidos de tamanhos muito variados.

Tratando da variabilidade dos fatores, a Capacidade de Carga do Coletor é diferente das

já apresentadas, pois os equipamentos utilizados por este podem ser alterados de maneira

relativamente fácil, mas o ideal é que seja mantido um padrão que possibilite a coleta de

forma completa e eficiente.
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• Atividades de Armazenagem

As três atividades de armazenagem apresentadas na Figura 27 serão as utilizadas

na avaliação do indicador do problema, que é a distância (e o tempo) no Problema de

Roteamento de Coleta em um armazém.

As atividades são apresentadas na ordem em que ocorrem no armazém, sendo a

Alocação de SKUs definida por um conjunto de regras, chamado de Poĺıtica de Alocação

de SKUs (descrito na seção 2.4) que define a posição-palete de cada um dos SKUs a se-

rem estocados. Os primeiros fatores descritos no item “Caracteŕısticas do Armazém” são

levados em consideração no momento da alocação dos SKUs, pois estes são distribúıdos

ao longo de todos os corredores e posições-palete.

O Agrupamento de Pedidos (descrito na seção 2.5) acontece após a chegada dos pedi-

dos e depende da Poĺıtica de Alocação de SKUs, visto que os métodos aplicados precisam

de informações de posição e distância entre SKUs. Além disso, o tamanho dos pedidos e a

Capacidade de Carga do Coletor são fatores important́ıssimos na etapa de Agrupamento

dos Pedidos.

Por fim, o Roteamento de Coleta (descrito na seção 2.6) define o caminho a ser

percorrido no armazém para a coleta dos itens dos pedidos, o que influencia diretamente

a distância, sendo este o indicador avaliado. Este caminho pode ser definido de diversas

formas e é fortemente dependente da forma com que os pedidos foram agrupados na etapa

anterior. Desta forma, é posśıvel perceber a intensa relação entre as caracteŕısticas do

armazém e as atividade de armazenagem.

3.2 Definição do Problema

Como apresentado no caṕıtulo anterior, o Problema de Roteamento de Coleta em um

armazém pode ser interpretado como um Steiner Travelling Salesman Problem e pode

ser resolvido de forma ótima por métodos exatos, com alta demanda computacional, ou

de forma não comprovadamente ótima, mas satisfatória em termos computacionais, por

métodos heuŕısticos. Além disso, a literatura afirma que o Agrupamento de Pedidos e a

Poĺıtica de Alocação de SKUs afetam diretamente a construção das rotas de coleta.

Deste modo, este trabalho busca resolver o STSP utilizando a combinação entre

métodos simples de Roteamento de Coleta, Agrupamento de Pedidos e Poĺıticas de Alocação

de SKUs para armazéns com diversas caracteŕısticas, por meio de experimentações de
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cenários. Como já mencionado, devido à complexidade de alguns métodos e à carac-

teŕıstica NP-dif́ıcil do problema em questão, é necessário delimitar quais métodos serão

utilizados e quais variantes serão consideradas nos cenários.

Neste trabalho, para a resolução do STSP nos diferentes cenários, são feitas as se-

guintes restrições:

• A capacidade (em número de itens) de coleta por viagem é conhecida e finita, sendo

maior ou igual que qualquer pedido individual.

• Todos os SKUs do armazém ocupam o mesmo espaço no véıculo de coleta e ocupam

apenas uma coluna de posições-palete no armazém. Além disso, uma coluna de

posições-palete possui apenas um tipo de SKU.

• O horizonte de planejamento é mono-periódico, ou seja, já são conhecidos os pedidos

e itens a serem coletados antes do ińıcio da operação em si e não são adicionados

mais pedidos ao longo desta.

• O ponto de ińıcio da rota de coleta é o mesmo ponto de término, conhecido como

ponto O/D.

• Os casos tratados não consideram Zoneamento, ou seja, o armazém não é dividido

em zonas e o coletor pode percorrer este por inteiro.
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4 APLICAÇÃO A DIFERENTES

CONFIGURAÇÕES DE ARMAZÉNS

Com o objetivo de apresentar ao leitor como o problema foi modelado e abordado de

forma computacional, neste caṕıtulo serão descritos os parâmetros utilizados na criação

dos cenários para a experimentação e os resultados obtidos. O foco destes experimentos

é a proposição de recomendações para aplicação de métodos de Operação em Armazéns.

4.1 Planejamento dos Experimentos

Como apresentado anteriormente, este trabalho possui duas frentes de atuação, que

retratam o mesmo problema. A primeira diz respeito à avaliação de Poĺıticas de Alocação

de SKUs, métodos de Agrupamento de Pedidos e métodos de Roteamento de Coleta, que

será realizada por meio da criação de cenários que representem as diferentes caracteŕısticas

de um armazém.

Para isso, serão realizadas Análises de Variância considerando as três atividades apre-

sentadas nas Seções 2.4, 2.5 e 2.6, cada uma com diferentes ńıveis (métodos) e aplicadas

aos diferentes cenários a serem criados, baseados em dados da literatura e caracteŕısticas

de mercado. Desta forma, será posśıvel avaliar de forma conjunta as Poĺıticas de Alocação

de SKUs e os métodos de Agrupamento de Pedidos e de Roteamento de Coleta em suas

capacidades de melhorar a variável resposta considerada, ou seja, a distância total de

coleta de um grupo de pedidos.

Para as etapas de criação de cenários e simulação dos métodos, foram elaborados pro-

gramas na linguagem Python (v. 3.7), utilizando o ambiente de desenvolvimento Sublime

Text 3 e processados utilizando um computador pessoal com processador Intel®Core

™i5-7200U CPU e 3.1 GHZ, RAM: 8GB. As Poĺıticas de Alocação de SKUs e os métodos

de Agrupamento de Pedidos e de Roteamento de Coleta desenvolvidos e implementados

são descritos em mais detalhes na Seção 4.1.2.
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4.1.1 Geração dos Cenários

De modo a representar uma maior variedade de armazéns e desta forma gerar resulta-

dos mais completos e confiáveis para a análise proposta, os cenários modelados possuem

6 fatores de criação, com diferentes ńıveis para cada um destes. Os fatores selecionados e

seus respectivos ńıveis, baseados na literatura e em dados de mercado, são apresentados

em mais detalhes a seguir e agrupados em seguida na Tabela 1.

• Número de Corredores

O número de corredores em um armazém pode variar muito, dependendo da área

dispońıvel, do layout selecionado e das necessidades da empresa em relação ao seu espaço

de armazenagem. Na literatura, como em Cano, Correa-Espinal e Gómez-Montoya (2017)

e Scholz et al. (2016), o número de corredores utilizados varia de 5 a 30 corredores, porém

há uma tendência do aumento de tamanho dos armazéns (MICHEL, 2019). Desta forma,

este fator apresenta três ńıveis, representando armazéns considerados pequenos, médios e

grandes, tendo 10 corredores, 25 corredores e 50 corredores, respectivamente. Além disso,

a distância entre o acesso de dois corredores adjacentes é considerada como sendo de 3

metros.

• Comprimento dos Corredores

Junto com o fator anterior, o comprimento dos corredores é o principal fator que

determina a área total de coleta de um armazém e, assim como o número de corredores,

também pode variar bastante devido às diferentes caracteŕısticas de layout do armazém. O

comprimento dos corredores está diretamente relacionado ao número de posições de coleta,

visto que as dimensões destas são praticamente fixas, pois são destinadas à alocação de

apenas um palete.

Na literatura, considera-se comumente corredores com comprimento entre 10 e 100

posições de coleta, o que, considerando os ńıveis do fator anterior e as dimensões padrão

de uma posição de coleta, vai de encontro com as classificações de tamanho de armazéns

por área (Pequeno - até 25.000 ft2 / Médio - até 100.000 ft2 / Grande - maior que 100.000

ft2) (WAREHOUSEONE, 2020). Desta forma, o fator Comprimento dos Corredores é

expresso pelo número de posições de coleta e possui 4 ńıveis, sendo estes: 1) 10 posições

de coleta; 2) 25 posições de coleta; 3) 50 posições de coleta e 4) 100 posições de coleta.

Além disso, a medida considerada para a largura de uma posição de coleta é de 1 metro.
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• Tamanho Médio dos Pedidos

A quantidade média de itens por pedido é um fator fortemente influenciado pelo

padrão de demanda dos clientes, ou seja, existem empresas cujos clientes adquirem poucos

itens por pedido e empresas cujos clientes adquirem diversos itens por pedido. Nas duas

pontas deste espectro estão as empresas de e-commerce, com médias próximas a dois itens

por pedido (BOYSEN; DE KOSTER; WEIDINGER, 2019), e as empresas de varejo, que

podem chegar a dezenas de itens em um único pedido de reposição de estoque (REISER,

2020).

De forma a representar os diferentes tipos de demandas, este fator possui 4 ńıveis,

sendo estes: 1) Média de 2 itens por pedido; 2) Média de 10 itens por pedido; 3) Média

de 25 itens por pedido e 4) Média de 50 itens por pedido.

• Variabilidade do Número de Itens

Assim como a média de itens por pedido varia de acordo com a empresa e os

padrões de consumo de seus clientes, os pedidos possuem diferenças no número de itens

mesmo para uma mesma empresa, e esta variabilidade deve ser considerada. Para isso, o

número de itens dos pedidos é gerado considerando uma distribuição Normal com médias

de acordo com o fator anterior e desvios-padrão definidos de maneira que as variações de

tamanho em 3 desvios-padrão (3σ) não ultrapassem 25% e 50%, para mais e para menos,

em relação à média, sendo estes os dois ńıveis deste fator.

• Corredores de Cruzamento

Uma caracteŕıstica marcante do layout de armazéns, como já apresentado ante-

riormente, a presença ou não de Corredores de Cruzamento (entre blocos) é um fator

importante a se considerar na criação dos cenários. Neste trabalho, o fator Corredores

de Cruzamento apresenta apenas 2 ńıveis: 1) Ausência de Corredor de Cruzamento entre

blocos (Figura 8) e 2) Presença de Corredor de Cruzamento entre blocos (Figura 4), sendo

seu posicionamento sempre no meio do comprimento do armazém, de modo à dividi-lo

em 2 blocos de dimensões iguais.

• Capacidade de Coleta

Por fim, o último fator a ser considerado na criação de cenários é a Capacidade

de Coleta, ou seja, a quantidade máxima de itens que pode ser coletada em apenas uma
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viagem. Este fator influencia diretamente o modo como os pedidos serão agrupados,

pois capacidades maiores permitem que mais pedidos sejam coletados em uma mesma

viagem, ao passo que capacidades menores limitam este agrupamento. Embora existam

poucas análises relacionadas diretamente à Capacidade de Coleta na literatura, nos artigos

encontrados este valor varia de 2 a 8 vezes o tamanho do maior pedido, desta forma, para

este estudo são considerados 2 ńıveis: 1) Capacidade 2 vezes o tamanho do maior pedido

e 2) Capacidade 5 vezes o tamanho do maior pedido.

Tabela 1: Fatores e Nı́veis - Geração de Cenários

Fator Unidade Nı́vel

Número de Corredores Corredores de Coleta

A) 10

B) 25

C) 50

Comprimento dos Corredores Posições de Coleta por Corredor

A) 10

B) 25

C) 50

D) 100

Tamanho Médio dos Pedidos Itens por Pedido

A) 2

B) 10

C) 25

D) 50

Variabilidade do Número de Itens Variação do Tamanho Médio dos Pedidos
A) ±25%

B) ±50%

Corredores de Cruzamento Número de Blocos
A) 1

B) 2

Capacidade de Coleta Proporção do Maior Pedido
A) 2x

B) 5x

Fonte: Elaborado pelo autor

Desta forma, este trabalho apresenta uma análise com 384 combinações de fatores

(3x4x4x2x2x2), ou seja, 384 cenários diferentes, abrangendo assim uma ampla gama de

tipos de armazéns. Além disso, para cada cenário foram consideradas 5 instâncias geradas

aleatoriamente e compostas por 150 pedidos cada, de modo a ampliar a análise por meio

de réplicas e obter resultados estatisticamente mais confiáveis.
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4.1.2 Métodos Utilizados

Com os diferentes cenários definidos e as instâncias geradas, a análise a ser realizada

possui três outros fatores relacionados a operação de armazéns: 1) Poĺıticas de Alocação

de SKUs, 2) Métodos de Agrupamento de Pedidos e 3) Métodos de Roteamento de Coleta,

que representam as principais atividades consideradas neste trabalho. Cada um destes

fatores possui diferentes ńıveis, caracterizados por alguns dos métodos e estratégias apre-

sentados anteriormente no Caṕıtulo 2, sendo os escolhidos para utilização nas análises

dispostos na Tabela 2 a seguir.

Tabela 2: Fatores e Nı́veis - Operação de Armazéns

Fator Nı́vel

1- Alocação Aleatória

2- Alocação por Classes (Within-Aisle)Poĺıtica de Alocação de SKUs

3- Alocação por Classes (Across-Aisle)

1 - Método Simples: FCFS

2 - Algoritmo Semente: MNLC + MNII

3 - Algoritmo Semente: MNLC + MNCA

4 - Algoritmo Semente: MNLC + RPS

5 - Algoritmo Semente: MNLC + RPC

6 - Algoritmo Semente: MNLC + RCG

7 - Algoritmo Semente: MNCC + MNII

8 - Algoritmo Semente: MNCC + MNCA

9 - Algoritmo Semente: MNCC + RPS

10 - Algoritmo Semente: MNCC + RPC

11 - Algoritmo Semente: MNCC + RCG

12 - Algoritmo Semente: MACC + MNII

13 - Algoritmo Semente: MACC + MNCA

14 - Algoritmo Semente: MACC + RPS

15 - Algoritmo Semente: MACC + RPC

16 - Algoritmo Semente: MACC + RCG

17 - Algoritmo Semente: MSPCC + MNII

18 - Algoritmo Semente: MSPCC + MNCA

19 - Algoritmo Semente: MSPCC + RPS

20 - Algoritmo Semente: MSPCC + RPC

Agrupamento de Pedidos

21 - Algoritmo Semente: MSPCC + RCG
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Tabela 2: Fatores e Nı́veis - Operação de Armazéns

Fator Nı́vel

1 - Traversal

2 - Return

3 - Midpoint

4 - Largest Gap

Roteamento de Coleta

5 - Composite*

Fonte: Elaborado pelo autor

Considerando a quantidade de ńıveis para cada um dos fatores relacionados a operação

de armazéns, este trabalho possui 315 combinações de métodos e estratégias (3x21x5),

que serão aplicadas a cada um dos 384 cenários com 5 instâncias, totalizando 604800

experimentos diferentes.

• Poĺıtica de Alocação de SKUs

Como já comentado na Seção 2.4, este fator, que define o modo como cada SKU é

distribúıdo nas posições-palete, possui três ńıveis a serem considerados neste trabalho: 1)

Alocação Aleatória (Dedicada), 2) Alocação por Classes (Within-Aisle) e 3) Alocação por

Classes (Across-Aisle). A Alocação por Famı́lia de Produtos foi exclúıda da análise devido

à alta complexidade de seus métodos, que necessitariam de dados de demanda agrupada e

utilização antecipada de métodos de Roteamento de Coleta, o que estaria além do escopo

do presente trabalho.

• Agrupamento de Pedidos

A atividade de Agrupamento de Pedidos é, nesta análise, o fator com o maior número

de ńıveis, pois, além de considerar métodos simples, considera também os Algoritmos

Semente (Seção 2.5.2), que internamente possuem duas fases com diferentes “subńıveis”,

aumentando assim o número de combinações. Neste estudo, são considerados o método

simples FCFS (Seção 2.5.1) já apresentado e a combinação de 4 Regras de Seleção de

Sementes e 5 Regras de Adição de Ordem, totalizando 21 ńıveis (1+(4x5)). O Algoritmo

de Economias não está inclúıdo na análise devido à necessidade de utilização antecipada

de métodos de Roteamento de Coleta.
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As Regras de Seleção de Sementes utilizadas são:

a) Maior Número de Locais de Coleta (MNLC)

b) Maior Número de Corredores de Coleta (MNCC)

c) Maior Amplitude de Corredores de Coleta (MACC)

d) Maior Soma Ponderada de Corredores de Coleta (MSPCC)

Já as Regras de Adição de Ordem utilizadas são:

a) Maior Número de Itens Idênticos (MNII)

b) Menor Número de Corredores Adicionais (MNCA)

c) Regra do Pedido Semente (RPS)

d) Regra do Pedido Candidato (RPC)

e) Regra do Centro de Gravidade (RCG)

• Roteamento de Coleta

Este fator, que representa a última atividade da coleta de pedidos, define o modo como

o armazém será percorrido para a coleta de itens de um pedido, processo que consome

bastante tempo dos funcionários do armazém e é considerado chave para a eficiência da

operação deste. Como comentado anteriormente, neste estudo são considerados apenas

métodos simples e de fácil implementação por parte dos coletores, que devem ser capazes

de aplicar os métodos de forma intuitiva, ao mesmo tempo em que os métodos devem

produzir soluções de roteamento com desempenho satisfatório.

Desta forma, o fator Roteamento de Coleta possui 5 ńıveis (métodos) a serem consi-

derados no presente estudo, sendo estes: 1) Traversal, 2) Return, 3) Midpoint, 4) Largest

Gap e 5) Composite*, todos estes apresentados ao longo da Seção 2.6.

4.2 Análise e Discussão dos Resultados

Após a realização dos experimentos, uma grande quantidade de dados foi gerada, sendo

organizada de modo a facilitar a análise a ser conduzida. Para esta análise, foi utilizado o

software Minitab®Statistic Software 20, sendo realizadas Análises de Variância (ANOVA)

com múltiplos fatores e Testes de Tukey, de modo a identificar diferenças entre fatores

e interações entre estes. O método da ANOVA foi inicialmente apresentado por Ronald

Fischer no ińıcio dos anos 1920 e o Teste de Tukey por John Tukey no final dos anos 1930

(MEMORIA, 2004).
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É necessário destacar que os pressupostos necessários para aplicação da ANOVA,

como a normalidade de reśıduos, foram verificados, e a possibilidade de utilização desta

foi confirmada, sendo adotado um ńıvel de significância de 5% para todas as análises deste

caṕıtulo. Ademais, a variável resposta considerada em todo este caṕıtulo foi a distância,

em metros, percorrida para a coleta de um grupo de pedidos, de forma que quanto menor

esta distância, melhor é o desempenho do método analisado.

4.2.1 Análise dos Cenários e Recomendações

Com o intuito de desenvolver uma solução recomendativa para a utilização de Poĺıticas

de Alocação de SKUs e métodos de Agrupamento de Pedidos e de Roteamento de Coleta

de maneira conjunta, uma ANOVA com três fatores foi realizada para cada um dos 384

cenários de armazéns criados. Para cada um destes, obteve-se a combinação entre uma

Poĺıtica de Alocação de SKUs, um método de Agrupamento de Pedidos e um método de

Roteamento de Coleta que resultasse na menor distância total de coleta (em metros) dos

150 pedidos considerados.

Uma tabela descrevendo a melhor Poĺıtica de Alocação, o melhor Método de Agru-

pamento de Pedidos e o melhor Método de Roteamento de Coleta para cada cenário

é apresentada no Apêndice B, na qual a primeira coluna descreve as caracteŕısticas do

cenário de acordo com os ńıveis da Tabela 1. Esta tabela ainda apresenta a melhor com-

binação destes três fatores, levando-se em consideração a média das 5 instâncias, que

muitas vezes foi diferente da junção dos melhores métodos individuais, indicando uma

posśıvel interação entre os fatores. Ademais, esta tabela apresenta a diferença entre as

duas combinações de métodos citadas.

Além dos resultados recomendativos, a Análise de Variância com múltiplos fatores

realizada permitiu que fossem avaliados, de forma geral, o desempenho de cada ńıvel dos

fatores e as interações entre esses, de modo que alguns padrões pudessem se identificados.

A Figura 28 a seguir ilustra os gráfico de efeitos principais para os três fatores relacionados

a operação de armazéns, auxiliando na compreensão das diferenças entre os ńıveis.
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Figura 28: Gráficos de Efeitos Principais

Fonte: Elaborado pelo autor

Tratando das Poĺıticas de Alocação de SKUs, foi posśıvel identificar uma grande su-

perioridade da poĺıtica Within-Aisle, sendo considerada a mais eficiente em 327 dos 384

cenários, ou seja, em mais de 85% dos casos, enquanto a poĺıtica Across-Aisle apresentou

resultados muitas vezes estatisticamente iguais à primeira, mas de forma geral seu de-

sempenho foi levemente inferior, como é posśıvel observar no primeiro gráfico da Figura

28. Por outro lado, a poĺıtica de Alocação Aleatória apresentou os piores resultados, não

sendo considerada a melhor em nenhum dos 384 cenários tratados.

Ao avaliar os Métodos de Agrupamento de Pedidos, os resultados foram bastante di-

ferentes do fator anterior, com diversos métodos apresentando desempenhos semelhan-

tes, como observado no segundo gráfico da Figura 28. De forma geral, os métodos

(MNLC+MNCA), (MNLC+RPC) e (MNCC+RPS) apresentaram os melhores resulta-

dos, concentrando mais da metade dos cenários como melhores opções, seguidos pelo

método (MACC+RPS) que se mostrou muito eficiente para os cenários retratando ar-

mazéns menores (menos corredores e corredores mais curtos). Como é posśıvel perceber,

três destes métodos utilizam Regras de Adição de Ordem mais complexas (RPC e RPS),

o que pode explicar seus desempenhos superiores.

Por outro lado, os métodos de Agrupamento de Pedidos que apresentaram os piores

resultados forma o Método Simples - FCFS, (MNCC+RCG) e (MACC+RCG), não sendo

consideradas a melhor opção em nenhum dos cenários, com destaque para o primeiro, que
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foi considerado o pior método em 380 dos 384 casos. Ainda é posśıvel perceber um padrão

no desempenho dos métodos que possuem as regras de Adição de Ordem (RCG) e (MNII)

que, independentemente das regras de Seleção de Semente, apresentam desempenhos pi-

ores que os demais, gerando o perfil “serrilhado” do segundo gráfico. Existe uma clara

exceção para o Método Simples - FCFS, que possui as maiores médias de distância e desta

forma o pior desempenho.

Tratando do Roteamento de Coleta, os métodos Composite* e Largest Gap apresenta-

ram os melhores resultados, englobando juntos 360 dos 384 cenários como melhor opção,

mas com primeiro superando o segundo por mais de 100 cenários (232 x 128). O terceiro

gráfico na Figura 28 ilustra esta situação, com o método Composite* superando os demais

com certa vantagem, seguido pelo Largest Gap. Ainda na Figura 28, é posśıvel identifi-

car o desempenho ruim do método Return, que está completamente isolado dos demais

métodos e não foi considerado a melhor opção em nenhum cenário.

Por fim, algumas interações entre estes três fatores puderam ser identificadas, sendo

a principal destas a interação entre a Poĺıtica de Alocação Across-Ailse e o método de

Roteamento Return. Esta interação esteve presente em pouco mais de 300 cenários,

gerando impactos positivos (redução das médias de distância) relevantes, mas não sendo

o suficiente para, como já comentado, tornar o método Return a melhor opção em algum

cenário. Outras interações, desta vez com impactos maiores, mas menos frequentes dentre

os cenários, foram identificadas entre a mesma Poĺıtica de Alocação anterior e os métodos

Midpoint e Largest Gap, sendo encontradas sempre de forma conjunta.

De maneira a ilustrar a significância da análise anterior, a tabela da ANOVA para

os efeitos principais e para as interações entre fatores é apresentada a seguir na Tabela

3. Nesta tabela, caso o “Valor-P” seja menor que 0,05 (ńıvel de significância), rejeita-

se a hipótese nula de que todos as médias são iguais (para os efeitos principais) ou a

hipótese nula de que não existe interação entre fatores (para as interações). Desta forma,

é posśıvel então afirmar que existem diferenças nas médias dos três fatores analisados

e existe interação entres os fatores Alocação de SKUs e Roteameto de Coleta, como

evidenciado.
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Tabela 3: Tabela ANOVA - Efeitos Principais e Interações

Fonte GL SQ QM Valor F Valor-P

Alocação de SKUs 2 2,36E+12 1,18E+12 652,22 0,00

Agrupamento de Pedidos 20 5,60E+11 2,8E+10 15,47 0,00

Roteamento de Coleta 4 7,96E+12 1,99E+12 1100,96 0,00

Alocação*Agrupamento 40 2,59E+09 64657142 0,04 1,00

Alocação*Roteamento 8 1,47E+12 1,83E+11 101,44 0,00

Agrupamento*Roteamento 80 5,78E+10 7,22E+08 0,4 1,00

Alocação*Agrupamento*Roteamento 160 2,31E+09 14423615 0,01 1,00

Erro 604485 1,09E+15 1,81E+09

Total 604799 1,11E+15 1,11E+15

Fonte: Elaborado pelo autor

Estas interações podem ser explicadas pelo fato da poĺıtica Across-Aisle concentrar

os itens na extremidade dos corredores, caracteŕıstica benéfica para estes três métodos

de roteamento, que não permitem o cruzamento por completo de um corredor de coleta

e forçam o retorno para a mesma extremidade de entrada. Foi posśıvel ainda perceber

interações muito leves entre alguns métodos de Agrupamento de Pedidos, em especial os

que possuem as Regras de Adição de Ordem RPC e RPS, e o método de Roteamento de

Coleta Traversal, mas o baixo impacto e frequência das interações não permitiram que

sua significância fosse confirmada.

4.2.2 Análise de Interações Gerais

Além das análises realizadas para cada cenário individualmente, a totalidade dos da-

dos foi considerada em uma única Análise de Variância com 9 fatores, sendo estes os 3

considerados nas análises da seção anterior mais os 6 fatores utilizados na criação dos

cenários: “Número de Corredores”, “Comprimento dos Corredores”, “Tamanho Médio

dos Pedidos”, “Variabilidade do Número de Itens”, “Corredores de Cruzamento” e “Ca-

pacidade de Coleta”. O intuito desta análise é avaliar as posśıveis interações entre cada um

dos 6 fatores relacionados a geração dos cenários e os 3 fatores relacionados a operação de

armazéns, a serem chamados de “primários”, podendo assim explorar os resultados mais

a fundo e entender melhor certas particularidades do problema.

• Efeitos Devidos a “Número de Corredores”
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Os gráficos de interação gerados pelo software estat́ıstico são apresentados na Figura

29 a seguir, sendo posśıvel identificar o forte paralelismo entre as linhas em todos eles,

indicando assim a ausência de interações.

Figura 29: Gráficos Fatoriais - Número de Corredores

Fonte: Elaborado pelo autor

No terceiro gráfico existe um pequeno desvio do método Traversal em relação aos

demais, indicando que este seria afetado negativamente pelo aumento do número de cor-

redores, o que faz sentido visto que este força o percorrimento por completo de todos

os corredores com itens a serem coletados. Porém, este desvio não é estatisticamente

significante para ser considerado como uma interação.

• Efeitos Devidos a “Comprimento dos Corredores”

A Figura 30 a seguir apresenta os gráficos de interação entre os fatores primários

e o fator “Comprimento dos Corredores”, nos quais é posśıvel observar que as linhas

de desempenho dos métodos são bastante paralelas entre si nos dois primeiros gráficos,

representando assim a ausência de interações nestes.
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Figura 30: Gráficos Fatoriais - Comprimento dos Corredores

Fonte: Elaborado pelo autor

Porém, novamente no terceiro gráfico, um método de Roteamento de Coleta possui

um desvio, sendo desta vez o método Return, que é afetado negativamente pelo aumento

do comprimento dos corredores de forma desproporcional em relação aos demais. Este

desvio, mesmo que leve, é estatisticamente significante para configurar uma interação,

podendo ser justificada pelo fato do método Return sempre forçar o retorno do coletor

para o corredor de cruzamento frontal, mesmo que o último item a ser coletado no corredor

esteja mais próximo da extremidade posterior.

• Efeitos Devidos a “Tamanho Médio dos Pedidos”

A Figura 31 a seguir apresenta os gráficos de interação entre os fatores primários e o

fator “Tamanho Médio dos Pedidos”, sendo posśıvel observar o alto grau de paralelismo

entre as linhas em todos os gráficos. Os desvios da Poĺıtica de Alocação Aleatória e do

método de roteamento Traversal no primeiro e terceiro gráficos, respectivamente, não são

considerados grandes o suficiente para serem classificados como interações.
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Figura 31: Gráficos Fatoriais - Tamanho Médio dos Pedidos

Fonte: Elaborado pelo autor

• Efeitos Devidos a “Variabilidade do Número de Itens”

De maneira semelhante aos casos anteriores, os gráficos de interações entre os fatores

primários e o fator “Variabilidade do Número de Itens” são apresentados na Figura 32 a

seguir. No primeiro gráfico as linhas são aproximadamente paralelas, indicando ausência

de interação, mas nos dois outros gráficos existem desvios que devem ser analisados mais

profundamente.
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Figura 32: Gráficos Fatoriais - Variabilidade do Número de Itens

Fonte: Elaborado pelo autor

No segundo gráfico, é identificada uma interação negativa entre a variação do número

de itens e o método de agrupamento FCFS, visto que este não melhora seu desempenho

de forma tão acentuada quanto os demais com o aumento da variação. Já no terceiro

gráfico, é posśıvel identificar dois grupos de linhas aproximadamente paralelas, a primeira

com os métodos Return, Traversal e Composite* e a segunda com os métodos Midpoint

e Largest Gap, indicando que existem diferenças entre como os métodos respondem ao

aumento da variabilidade no número de itens, indicando assim uma interação.

• Efeitos Devidos a “Corredores de Cruzamento”

A Figura 33 a seguir apresenta os gráficos de interações entre os fatores primários

e o fator “Corredores de Cruzamento”. Neste caso, apenas são identificadas interações

no terceiro gráfico, indicando que os métodos de Roteamento de Coleta são afetados de

maneira diferente pelo número de Corredores de Cruzamento em um armazém.



83

Figura 33: Gráficos Fatoriais - Corredores de Cruzamento

Fonte: Elaborado pelo autor

De maneira semelhante ao caso anterior, desta vez os métodos estão separados em três

grupos de linhas paralelas: (Return), (Composite* + Traversal) e (Midpoint + Largest

Gap), que diferenciam-se bastante entre si, evidenciando assim a interação. É posśıvel

perceber que os métodos Midpoint e Largest Gap são os que possuem os menores ganhos

de desempenho com a adição de um Corredor de Cruzamento, visto que estes já “dividem

o armazém em duas partes” de certa forma. Os outros três métodos apresentam maiores

ganhos com a mudança pois evitam o percorrimento de corredores muito longos com a

separação do armazém em blocos, com destaque para o método Return que é o mais

prejudicado por corredores muito compridos, como já evidenciado.

• Efeitos Devidos a “Capacidade de Coleta”

Tratando das interações entre os fatores primários e o fator “Capacidade de Coleta”,

a Figura 34 a seguir apresenta os gráficos gerados pelo software estat́ıstico. De forma

semelhante ao fator anterior, a interação entre fatores ocorre apenas para os métodos de

Roteamento de Coleta, visto que são os únicos cujas linhas de desempenho nos gráficos

não são aproximadamente paralelas.
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Figura 34: Gráficos Fatoriais - Capacidade de Coleta

Fonte: Elaborado pelo autor

Nesta interação, os métodos Return, Traversal e Composite* possuem ganhos de de-

sempenho maiores que os outros dois métodos, com destaque para o método Traversal que

passa de segundo pior para segundo melhor, evidenciando assim uma interação positiva

relevante com o aumento da capacidade de coleta. Isto se dá principalmente pelo fato do

número de agrupamentos diminuir com o aumento da capacidade, como o segundo gráfico

mostra, e essa diminuição é bastante significativa para um método que cruza todos os

corredores por inteiro como o Traversal.

4.3 Principais Insights e Recomendações Práticas

Ao longo deste caṕıtulo, foram apresentadas diversas análises para entender melhor

o desempenho de diferentes Poĺıticas de Alocação de SKUs, métodos de Agrupamento de

Pedidos e métodos de Roteamento de Coleta na operação de um armazém. Além disso,

estes desempenhos foram aplicados a uma grande variedade de cenários, gerando assim

uma análise bastante compreensiva acerca do tema tratado no presente trabalho.

Como principal descoberta deste caṕıtulo, é necessário destacar o desempenho muito

bom do método Composite*, proposto neste trabalho, e que possui médias gerais de

distância total inferiores a todos os outros métodos no contexto geral e também estando

entre os melhores na grande maioria dos cenários. Ademais, a simplicidade da formulação
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deste método em relação ao método Largest Gap, o segundo com menores médias de

distância, exalta ainda mais sua eficiência e sua aplicabilidade em casos práticos.

Outro ponto a ser destacado é o desempenho muito semelhante dos métodos de Agru-

pamento de Pedidos, com exceção do Método Simples - FCFS, que apresenta médias de

distância mais altas, independentemente do método de Roteamento de Coleta adotado.

Este relativo nivelamento entre os métodos de Agrupamento de Pedidos pode levar à con-

clusão de que, em muitos casos, vale a pena utilizar as regras de Seleção de Semente e de

Adição de Ordem mais simples e intuitivas, visto que o esforço para se implementar as

mais complexas pode não valer a pena no dia a dia de um armazém.

Por fim, a grande recomendação prática deste caṕıtulo é a tabela com a seleção dos

melhores métodos para cada atividade e a melhor combinação para cada cenário, ferra-

menta que pode ser muito útil no momento de tomada de decisões operacionais em um

armazém. Sua utilização pode ser feita da seguinte forma: partindo da Tabela 1, definir,

para cada fator, qual ńıvel se encaixa melhor nas caracteŕısticas do armazém em questão,

obtendo assim um código de 6 letras, cada uma representando um fator.

Este código representa um dos 384 cenários gerados neste estudo e, tendo este código

definido, basta consultar o Apêndice B para encontrar qual Poĺıtica de Alocação de SKUs,

método de Agrupamento de Pedidos e método de Roteamento de Coleta possuem o melhor

desempenho individual e qual combinação destes três fatores possui o melhor desempenho

conjunto para o tipo de armazém tratado. Além disso, a ferramenta permite que os

desempenhos das duas opções citadas sejam comparados, de maneira que o usuário desta

possa, em muitos casos, ponderar entre duas combinações de métodos antes de definir

quais serão utilizados para a operação de seu armazém.
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5 APLICAÇÃO A CASOS REAIS DE

ROTEAMENTO DE COLETA EM

SUPERMERCADOS

O caṕıtulo anterior apresentou uma análise compreensiva dos métodos de Roteamento

de Coleta e das diversas caracteŕısticas de armazéns e atividades preliminares que podem

afetar o desempenho destes. Porém, isto foi feito para cenários realistas gerados aleatoria-

mente, de modo a englobar uma maior gama de aspectos e criar uma análise recomendativa

para o uso destes métodos na prática.

Neste caṕıtulo, os métodos de Roteamento de Coleta utilizados anteriormente são

aplicados a uma situação real, no contexto de coleta de itens em supermercados, tema já

apresentado no ińıcio do trabalho. Com o avanço da pandemia de COVID-19 em 2020

e as restrições à circulação impostas, a realização de compras online em supermercados

cresceu significativamente e, consequentemente, o número de pedidos a serem coletados

por funcionários cresceu, tornando esta atividade, antes com baixa demanda, essencial

para a operação de supermercados e aplicativos de delivery.

Ao aplicar os métodos estudados a casos reais, é posśıvel analisar o verdadeiro desem-

penho destes e entender como eles se comportam em cenários menos controlados, podendo

assim fornecer insights importantes para sua utilização visando ganhos operacionais para

empresas. Além disso, caso existam efeitos positivos na eficiência da coleta de pedidos, os

consumidores dos supermercados também poderiam perceber melhorias no processo, pois

receberiam suas compras ou encomendas de maneira mais rápida.

A seguir é detalhado como foi realizada a coleta de dados e o mapeamento de dois

supermercados, para a realização dos experimentos computacionais.

5.1 Coleta de Dados

Para a realização dos experimentos deste caṕıtulo, foi necessário obter informações de

demanda de consumidores para o serviço de compras online em supermercados, ou seja,

os pedidos realizados por clientes desta maneira. No contexto de um supermercado, cada

produto (p.e. caixa de leite, pacote de açúcar, etc.) contido em um pedido de compra é
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tratado como um item a ser coletado no supermercado, que, neste caso, é tratado como

uma espécie de armazém.

Para a coleta de pedidos feitos de maneira online em supermercados, primeiramente

foram realizados contatos com dois supermercados de médio porte na Região Oeste da

cidade de São Paulo, próximos à Cidade Universitária da USP, verificando a possibilidade

do compartilhamento de informações referentes a estes pedidos. Porém, por conta de

restrições resultantes da pandemia e questões de confidencialidade reportadas pelos esta-

belecimentos, não foi posśıvel obter estas informações diretamente com estes. Ainda por

questões de confidencialidade, os nomes dos dois supermercados não serão explicitados,

sendo estes referenciados genericamente como Supermercado A e Supermercado B.

Desta forma, com o intuito de ainda obter dados de pedidos realmente feitos por consu-

midores de maneira online, foi elaborado um questionário, utilizando a plataforma Google

Forms, e este foi compartilhado em diversos canais, visando alcançar diferentes públicos

de maneira abrangente. O questionário, reproduzido no Apêndice A, permite que o res-

pondente preencha, dentre uma ampla variedade de produtos (sem distinção de marca),

quais foram comprados em um único pedido, fornecendo assim os dados necessários para

realização dos experimentos. Além disso, também foram coletadas informações do perfil

de utilização do serviço de compra online em supermercados na pandemia.

Após duas semanas de coleta de dados, entre o final de Abril e o ińıcio de Maio

de 2021, o questionário havia recebido 196 respostas, que foram devidamente tratadas e

organizadas, resultando em um total de 161 pedidos, com uma variedade de 104 tipos de

produtos, a serem utilizados nos experimentos. O tratamento retirou respostas repetidas e

pedidos que possúıam um número muito grande de itens, além de algumas respostas-teste

realizadas inicialmente. O número de produtos por pedido variou de 1 a 49, sendo sua

média igual à 25,6 itens com um desvio padrão de 12,8. A Figura 35 a seguir apresenta

a distribuição dos pedidos de acordo com o número de produtos.
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Figura 35: Gráfico de distribuição de pedidos por número de produtos

Fonte: Elaborado pelo autor

Analisando as respostas da seção de “hábitos de consumo” do formulário, foi posśıvel

corroborar as tendências de maior utilização do modelo online para compras em super-

mercados durante a pandemia de COVID-19. Dos mais de 160 respondentes, 66% já

haviam realizado compras de maneira online em supermercados, seja por meio de aplica-

tivos de delivery ou diretamente com o estabelecimento. Destes 66%, mais de dois terços

realizam compras online pelo menos duas vezes por mês e o canal mais popular são os

aplicativos dedicados, como Rappi, UberEats e Cornershop, sendo utilizados em 70% dos

casos. Ademais, após o fim da pandemia, embora a maioria dos respondentes pretenda

voltar a comprar presencialmente nos supermercados, mais de 40% considera manter, pelo

menos parcialmente, o hábito de realizar compras online.

5.2 Mapeamento dos Supermercados

Após a coleta de dados de demanda, ou seja, os pedidos, foi necessário mapear os

estabelecimentos a serem analisados e definir a posição de cada um dos itens dos pedidos,

de modo a poder utilizá-los como inputs no programa criado para testar os métodos de ro-

teamento de coleta. Este mapeamento foi realizado presencialmente através de visitas aos

estabelecimentos e conversas com funcionários, de modo a entender melhor a distribuição

f́ısica dos produtos.
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Para isso, foram necessárias algumas adaptações, sem prejúızos à realidade, nos layouts

dos dois supermercados selecionados, sendo as principais a rotação, em 90 graus, de um

corredor de coleta que era perpendicular aos demais, e a mudança das posições de coleta ao

final dos corredores, de modo a obter os layouts retangulares para a aplicação dos métodos.

Além disso, foi considerado que cada posição de coleta contém apenas um produto, que

a distância entre posições adjacentes é de dois passos, e que a distância entre corredores

é de três passos, unidade de medida que será usada nesta parte do estudo.

Por fim, foi definido que cada pedido será coletado de forma individual, ou seja, um

coletor fará a coleta do pedido de um cliente por vez, excluindo-se assim os métodos de

Agrupamento de Pedidos desta parte do trabalho. Desta forma, as análises deste caṕıtulo

são voltadas exclusivamente aos métodos de Roteamento de Coleta apresentados na Seção

2.6, sendo estes: Traversal, Return, Midpoint, Largest Gap e Composite*.

Os dois supermercados possuem um tamanho bastante semelhante, sendo categoriza-

dos como de médio porte, e são frequentados pelos mesmos segmentos de clientes, sendo

assim concorrentes por atuarem na mesma região. Uma diferença marcante entre estes,

porém, é o layout adotado por cada um, o que torna a análise dos métodos de roteamento

de coleta ainda mais interessante ao considerar este fator.

O primeiro supermercado, referenciado como Supermercado A, possui 6 corredores de

coleta com 18 posições de coleta, distribúıdas igualmente em dois blocos, ou seja, este

supermercado possui 3 corredores de cruzamento, conforme layout ilustrado na Figura

36. O segundo supermercado, ou Supermercado B, possui um layout com um bloco

contendo 12 posições de coleta, porém possui 9 corredores de coleta e apenas 2 corredores

de cruzamento, como ilustrado na Figura 37. Desta forma, ambos os supermercados

possuem 108 posições de coleta, ou seja, 108 tipos de produtos diferentes que podem estar

contidos nos pedidos.

Note que, nestas duas figuras, as letras O/D marcam o ponto de Origem/Destino da

rota, que representa, na realidade, um caixa destinado apenas para pedidos realizados de

maneira online e cada coordenada entre colchetes representa o corredor e a posição no

corredor de determinado produto.
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Figura 36: Mapeamento do Supermercado A

Fonte: Elaborado pelo autor

Figura 37: Mapeamento do Supermercado B

Fonte: Elaborado pelo autor

Após o mapeamento completo dos supermercados, cada coordenada foi alocada a um

produto de acordo com sua posição real em cada caso. Desta forma, produtos semelhantes
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(p.e. Ketchup, Mostarda e Maionese) são alocados a posições próximas, retratando a

distribuição destes no supermercado. Embora ambos os casos possuam os mesmos 108

tipos de produtos mapeados, as coordenadas destes podem não ser as mesmas, visto

que a distribuição dos produtos escolhida por cada estabelecimento é feita de maneira

diferente. De modo a exemplificar, o produto “arroz integral” está na posição [5,13] no

Supermercado A e na posição [5,4] no Supermercado B, e o produto “barra de cereal”

está na posição [1,3] no Supermercado A e na posição [2,3] no Supermercado B.

5.3 Análise e Discussão dos Resultados

Assim como no caṕıtulo anterior, a implementação dos métodos heuŕısticos de Rotea-

mento de Coleta foi desenvolvida na linguagem Python (v. 3.7), utilizando o ambiente de

desenvolvimento Sublime Text 3. Para a obtenção do valor da solução ótima, informação

não coletada na análise anterior, foi utilizada a Linguagem de Modelagem AIMMS e o sol-

ver CPLEX 20.1, no qual foi implementada a formulação do STSP apresentada na seção

2.6 (expressões (2.7) à (2.15)), e resolvida otimamente para cada pedido individualmente.

Todas as análises foram realizadas utilizando um computador pessoal com processador In-

tel®Core ™i5-7200U CPU e 3.1 GHZ, RAM: 8GB. Ademais, todas as análises estat́ısticas

neste caṕıtulo foram realizadas com ńıvel de significância de 5%.

5.3.1 Análise Geral

De maneira geral, após a implementação dos 5 métodos heuŕısticos (Traversal, Return,

Midpoint, Largest Gap e Composite* ) em todos os 161 pedidos para os dois supermercados

tratados, a média do número de passos por pedido é apresentada na Tabela 4 a seguir,

assim como a média das soluções exatas e os gaps das soluções dos métodos em relação

a estas. Dada a simplicidade dos métodos heuŕısticos analisados, quanto menores os

gaps para a solução ótima, mais eficientes estes podem ser considerados, pois entregam

um desempenho satisfatório de maneira bem mais simples e intuitiva que a resolução do

STSP de forma ótima.
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Tabela 4: Avaliação da Média de Passos por Pedido e Gap para Solução Ótima

Supermercado A Supermercado B

Método Média de Passos Gap Média de Passos Gap

Traversal 202,0 13,1% 246,0 19,7%

Return 246,4 38,0% 327,2 59,3%

Midpoint 224,3 25,6% 257,0 25,1%

Largest Gap 214,0 19,8% 239,5 16,6%

Composite* 191,8 7,4% 229,7 11,8%

Solução Ótima 178,6 - 205,4 -

Fonte: Elaborado pelo autor

Primeiramente, é posśıvel observar que, em ambos os supermercados, o método heuŕıstico

que apresentou o melhor desempenho foi o Composite*, com gaps de 7,4% e 11,8% em

relação à solução ótima, e o método que apresentou o pior desempenho foi o Return, com

gaps de 38% e 59%. O fato do método Composite* apresentar o melhor desempenho é

bastante interessante, visto que este é derivado de um método mais complexo (Composite)

e que possui soluções consistentemente melhores, como destacado na Seção 2.6.5. Além

disso, o método Composite* possui com certa vantagem o maior número de resultados

iguais à solução ótima para ambos os supermercados, como apresentado na Tabela 5 a

seguir.

Tabela 5: Número de Resultados Iguais à Solução Ótima

Método Supermercado A Supermercado B

Traversal 17 (11%) 5 (3%)

Return 10 (6%) 6 (4%)

Midpoint 23 (14%) 13 (8%)

Largest Gap 26 (16%) 12 (7%)

Composite* 44 (27%) 19 (12%)

Fonte: Elaborado pelo autor

Ademais, outro ponto a se destacar nas duas tabelas anteriores é o desempenho apa-

rentemente melhor dos métodos no Supermercado A em relação ao Supermercado B,

possuindo menores médias de número de passos e mais resultados iguais à solução ótima

para todos os métodos.

Devido à grande variedade no número de produtos por pedido, o coeficiente de variação

dos dados originais é muito alto, chegando à quase 35% do valor da média para alguns
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métodos, o que pode comprometer a confiabilidade dos resultados. Desta forma, foi

utilizado o conceito de Perfis de Desempenho, proposto por Dolan e Moré (2002) e aplicado

utilizando uma planilha automatizada desenvolvida por Munari (2009) para apresentar

as diferenças de desempenho entre os métodos heuŕısticos na resolução de um grupo de

problemas, neste caso, o roteamento de coleta dos pedidos.

Neste conceito, um perfil de desempenho pode ser visto como a probabilidade, repre-

sentada no eixo das ordenadas, de que a razão entre o desempenho de um método e o

melhor desempenho entre os métodos esteja dentro de um fator τ , representado no eixo

das abscissas. Exemplificando, pode-se dizer que um perfil que apresenta um valor de P

= 0,6 para um τ = 1,2 consegue resolver 60% dos problemas com resultados no máximo

20% piores que o melhor resultado obtido. Desta forma, caso um perfil de desempenho

esteja acima dos demais no gráfico, isso indica que este método conseguiu resolver mais

problemas dentro de um fator τ que os demais, e não necessariamente que seu desempenho

foi melhor na solução destes problemas (DOLAN; MORé, 2002).

As Figuras 38 e 39 a seguir ilustram os Perfis de Desempenho para os supermercados

A e B, respectivamente.

Figura 38: Perfis de Desempenho - Supermercado A

Fonte: Elaborado pelo autor

Observando o gráfico da Figura 38, é posśıvel perceber que o método Composite*

domina os demais métodos, apresentando desempenho melhor ou igual que todos os outros



94

para 75% dos problemas (P = 0,75 para τ = 1), além de seu perfil estar sempre acima

dos demais e ser o primeiro a interceptar P = 1, com τ = 1,25, indicando assim que

sua maior razão para o melhor resultado de um problema não supera 25%. Por outro

lado, o método Return apresenta caracteŕısticas completamente opostas, apresentando

desempenho melhor ou igual aos demais em cerca de 5% dos problemas, estando sempre

bem abaixo dos demais perfis e interceptando P = 1 na casa de τ = 1,7, o mais alto entre

os métodos.

Figura 39: Perfis de Desempenho - Supermercado B

Fonte: Elaborado pelo autor

Analisando o gráfico da Figura 39, as conclusões são bastante semelhantes para os

métodos Composite* e Return, sendo estes o mais e menos dominantes, respectivamente.

Porém, para o método Traversal é posśıvel perceber uma tendência um pouco diferente

dos demais, visto que este apresenta valores de P muito bons até τ = 1,2, momento a

partir do qual seu perfil começa a se inclinar rapidamente de forma a aumentar sua maior

razão para o melhor resultado, chegando à τ = 1,6. Além disso, é necessário destacar que

a separação entre o método Return e os demais é ainda maior que no Supermercado A,

indicando assim resultados mais distantes do melhores para mais problemas.
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5.3.2 Análise por Classe de Pedidos

Como comentado, o número de produtos por pedido possui grande variedade, com

pedidos de apenas 1 produto até pedidos com quase 50 produtos. Assim, de modo a avaliar

o desempenho de cada método de forma mais detalhada, os pedidos foram separados de

acordo com seu tamanho (número de produtos/itens) do mesmo modo como na Figura

35, gerando assim 10 grupos, referenciados como Classes de Pedidos, a serem analisadas

separadamente. Do modo como o estudo foi conduzido, os termos “produtos” e “itens” são

equivalentes, visto que no formulário não foram coletados dados das quantidades unitárias

por produto.

• Supermercado A

A Figura 40 a seguir ilustra, para o Supermercado A, as médias do número de passos

por classe de pedidos para cada um dos métodos e para a solução ótima, assim como a

média geral destas classes ao se considerar todos os métodos.

Figura 40: Média do Número de Passos por Classe de Pedidos - Supermercado A

Fonte: Elaborado pelo autor

Ao analisar o gráfico da Figura 40, é posśıvel observar que todos os métodos possuem

desempenho semelhante para pedidos muito pequenos (1-5 itens), com uma média do

número de passos próxima a 85 passos por pedido. Ao aumentar o número de itens, já é

posśıvel perceber um descolamento do método Return em relação aos demais, tendência

que continua até os maiores pedidos, sendo este o método com os piores resultados.

O método Traversal se mantém próximo à média até pedidos com até 25 itens, ponto

a partir do qual começa a apresentar resultados melhores e se aproxima do método Com-
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posite*, o melhor em todas as classes de pedidos e relativamente próximo às médias da

solução ótima. Por outro lado, os métodos Midpoint e Largest Gap ficam um pouco

abaixo da média até os pedidos com no máximo 15 itens, mas têm uma grande piora de

desempenho a partir de pedidos com mais de 25 itens, ficando acima da média. Convém

destacar o método Midpoint que chega a se aproximar bastante dos piores resultados,

apresentados pelo método Return, nas classes acima de 40 itens.

De forma geral, é posśıvel perceber que o aumento do número médio de passos dados

é mais acentuado entre as classes de pedidos menores, quase triplicando entre a primeira

(1-5 itens) e quarta (16-20 itens) e crescendo menos de 50% a partir deste ponto. Isto se

deve à “diluição” das distâncias percorridas entre corredores, que dependem apenas do

número de corredores visitados e não diretamente da quantidade de itens por pedido.

Para os métodos Midpoint e Largest Gap, ainda é posśıvel identificar uma tendência

um pouco diferente da dos demais entre as classes de pedidos 16-20 e 21-26, pois, en-

quanto todos os outros métodos e a solução ótima sempre apresentam aumento da média

do número de passos com o aumento do número de produtos por pedido, este dois métodos

apresentam redução, mesmo que pequena. Este comportamento pode indicar uma sen-

sibilidade maior destes métodos à diluição das distâncias comentada anteriormente, que

começa a ser percebida a partir da quarta classe (16-20 itens).

De modo a verificar estatisticamente se realmente existe diferença significativa entre

o desempenho dos métodos, foram realizadas Análises de Variância (ANOVA) ou Testes

de Kruskal-Wallis para cada uma das classes de pedidos. Esta diferença de métodos

utilizados se deu devido às caracteŕısticas das amostras para cada classe, sendo aplicado

o segundo método (não-paramétrico) para classes com dados não normais. O ńıvel de

significância utilizado foi de 5% e os resultados, assim como qual análise foi utilizada, são

apresentados na Tabela 6. As análises foram conduzidas no Minitab®Statistic Software

20 e o método de de verificação de normalidade utilizado foi o teste de Anderson-Darling.
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Tabela 6: Desempenho dos Métodos por Classe de Pedidos - Supermercado A

Classe

de Pedidos

Amostra

(pedidos)

Análise

Utilizada
Conclusão

1 - 5 itens 10 Kruskal-Wallis Todos os desempenhos são iguais

6 - 10 itens 13 Kruskal-Wallis Todos os desempenhos são iguais

11 - 15 itens 19 ANOVA Todos os desempenhos são iguais

16 - 20 itens 18 ANOVA Pelo menos um desempenho é diferente

21 - 25 itens 19 Kruskal-Wallis Pelo menos um desempenho é diferente

26 - 30 itens 23 Kruskal-Wallis Pelo menos um desempenho é diferente

31 - 35 itens 13 ANOVA Pelo menos um desempenho é diferente

36 - 40 itens 22 ANOVA Pelo menos um desempenho é diferente

41 - 45 itens 17 Kruskal-Wallis Pelo menos um desempenho é diferente

46 - 50 itens 7 Kruskal-Wallis Pelo menos um desempenho é diferente

Fonte: Elaborado pelo autor

Comparando a tabela anterior com o gráfico da Figura 40, as análises também indicam

um desempenho semelhante dos métodos para pedidos menores (até 15 itens), antes de

começarem a se distanciar. Uma vez definido que pelo menos dois métodos possuem

desempenhos diferentes entre si, é posśıvel comparar todos os pares de métodos, para

identificar quais destes se diferenciam. Para os casos nos quais foi aplicada a ANOVA,

é utilizado o Teste de Tukey (TSD - Tukey Significant Difference), ao passo que para os

casos nos quais foi aplicado o Teste de Kruskal-Wallis, utiliza-se o Método de Dunn.

A Tabela 7 a seguir apresenta as conclusões obtidas, destacando, par a par, em quais

classes de pedidos um método obteve desempenho estatisticamente melhor que outro,

conforme a célula no canto superior esquerdo indica.

Tabela 7: Classes de Pedidos com Desempenhos Diferentes - Supermercado A
Linha melhor

que Coluna
Traversal Return Midpoint Largest Gap Composite*

Traversal -
(21-25) / (26-30) / (31-35)

(36-40) / (41-45) / (46-50)

(36-40) / (41-45)

(46-50)

(36-40) / (41-45)

(46-50)

Return -

Midpoint (21-25) -

Largest Gap (36-40) / (41-45) -

Composite*

(16-20) / (21-25) / (26-30)

(31-35) / (36-40) / (41-45)

(46-50)

(26-30) / (31-35)

(36-40) / (41-45)

(46-50)

(36-40) / (41-45)

(46-50)
-

Fonte: Elaborado pelo autor
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Analisando a Tabela 7, é posśıvel afirmar que os métodos Composite* e Traversal

destacam-se em todas as classes de pedidos (a partir de 16 itens), apresentando desem-

penhos significativamente melhores, ao passo que o método Return apresenta o pior de-

sempenho. A média do número de passos do método Midpoint começa a se distanciar dos

valores mais baixos a partir de pedidos com mais de 25 itens, ocorrendo algo semelhante

com o método Largest Gap, que fica em um patamar intermediário nas classes entre 36 e

45 itens, antes de se juntar aos piores métodos na classe com mais produtos por pedido.

• Supermercado B

A Figura 41 a seguir ilustra, para o Supermercado B, as médias do número de passos

por classe de pedidos para cada um dos métodos e para a solução ótima, assim como a

média geral destas classes, ao se considerar todos os métodos.

Figura 41: Média do Número de Passos por Classe de Pedidos - Supermercado B

Fonte: Elaborado pelo autor

Ao analisar o gráfico da Figura 41, é posśıvel observar que todos os métodos possuem

desempenho semelhante para pedidos muito pequenos (1-5 itens), com uma média do

número de passos próxima à 95 passos por pedido, mas com os métodos Traversal e

Return um pouco acima dos outros. Aumentando o número de produtos por pedido, o

método Return tem um crescimento bastante acentuado e se descola dos demais. Para

este caso, o método Return é o método que apresenta o comportamento de redução de

média do número de passos com aumento de itens, desta vez entre as classes 31-35 e 36-40.

Assim como no Supermercado A, o método Traversal se mantém próximo à média até

pedidos com até 20 produtos, ponto a partir do qual começa a apresentar resultados cada
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vez melhores (em relação à média), até se aproximar do método Composite* para pedidos

com mais de 40 produtos. O método Largest Gap apresenta os melhores resultados para

as classes de pedidos menores (até 25 itens), momento no qual seu desempenho começa a

piorar até chegar bem próximo à média na maior classe.

O método Midpoint, por sua vez, fica sempre próximo à média, com exceção das

classes 11-15 e 46-50, nas quais está abaixo e acima da média, respectivamente. Assim

como no Supermercado A, o método Composite* possui o melhor desempenho de forma

geral, estando sempre bem abaixo da média, sendo a melhor opção em quase todas as

classes e se aproximando bastante da solução ótima nas maiores classes.

Observando a média geral, o aumento do número de passos dados é mais uniforme

para o Caso B, embora as distâncias em valores absolutos sejam maiores. Isto se deve ao

maior número de corredores no layout do Caso B, além da presença de um único bloco,

que impede movimentações entre corredores pelo corredor de cruzamento.

Da mesma forma que foi realizado para o Supermercado A, ANOVAs e Testes de

Kruskal-Wallis foram conduzidos para avaliar estatisticamente os métodos de roteamento

no Supermercado B, seguindo os mesmos pressupostos de aplicação e ńıvel de significância

(5%). A Tabela 8 a seguir apresenta os resultados destas análises e os métodos utilizados

para a testagem.

Tabela 8: Desempenho dos Métodos por Classe de Pedidos - Supermercado B

Classe

de Pedidos

Amostra

(pedidos)

Análise

Utilizada
Conclusão

1 - 5 itens 10 Kruskal-Wallis Todos os desempenhos são iguais

6 - 10 itens 13 ANOVA Todos os desempenhos são iguais

11 - 15 itens 19 Kruskal-Wallis Pelo menos um desempenho é diferente

16 - 20 itens 18 ANOVA Pelo menos um desempenho é diferente

21 - 25 itens 19 Kruskal-Wallis Pelo menos um desempenho é diferente

26 - 30 itens 23 Kruskal-Wallis Pelo menos um desempenho é diferente

31 - 35 itens 13 Kruskal-Wallis Pelo menos um desempenho é diferente

36 - 40 itens 22 Kruskal-Wallis Pelo menos um desempenho é diferente

41 - 45 itens 17 Kruskal-Wallis Pelo menos um desempenho é diferente

46 - 50 itens 7 Kruskal-Wallis Pelo menos um desempenho é diferente

Fonte: Elaborado pelo autor

De forma diferente ao Supermercado A e como indicado no gráfico da Figura 41,
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o desempenho dos métodos é bastante semelhante apenas na menor classe de pedidos,

começando a se diferenciar a partir da segunda classe (6-10 itens). Assim como no caso

anterior, Testes de Tukey e o Método de Dunn foram utilizado para identificar quais

métodos possuem desempenhos diferentes para cada classe. Os resultados são apresenta-

dos na Tabela 9 a seguir.

Tabela 9: Classes de Pedidos com Desempenhos Diferentes - Supermercado B
Linha melhor

que Coluna
Traversal Return Midpoint Largest Gap Composite*

Traversal -

(11-15) / (16-20)

(21-25) / (26-30) / (31-35)

(36-40) / (41-45) / (46-50)

(36-40) / (41-45)

(46-50)
(46-50)

Return -

Midpoint

(6-10) / (11-15) / (16-20)

(21-25) / (26-30) / (31-35)

(36-40) / (41-45) / (46-50)

-

Largest Gap

(6-10) / (11-15) / (16-20)

(21-25) / (26-30) / (31-35)

(36-40) / (41-45) / (46-50)

(46-50) -

Composite*

(11-15) / (16-20)

(21-25) / (26-30) / (31-35)

(36-40) / (41-45) / (46-50)

(31-35) / (36-40)

(41-45) / (46-50)
(41-45) / (46-50) -

Fonte: Elaborado pelo autor

Analisando a Tabela 9, é posśıvel afirmar que o método Return possui um desempenho

pior que os demais em todas as classes de pedidos analisadas, exceto para a classe de 6-10

produtos, onde o método apenas é pior que os métodos Midpoint e Largest Gap. A partir

das classes de pedidos intermediários, os métodos Composite* e Traversal começam a

apresentar desempenhos melhores que os demais métodos, superando primeiro o método

Midpoint e depois o método Largest Gap. Na classe com os maiores pedidos (46-50 itens),

as médias estão divididas em 3 grupos: Composite* e Traversal com os melhores desem-

penhos (considerados iguais), Midpoint e Largest Gap com desempenhos intermediários

(também considerados iguais) e Return com o pior desempenho entre os métodos.

5.3.3 Análise do Número de Passos por Produto

Uma terceira análise realizada, e que não necessita da separação dos pedidos em gru-

pos, é a da média do número de passos por produto, visto que esta desconsidera a variação

no tamanho dos pedidos e utiliza uma unidade de medida padronizada (número de passos

por produto). Esta análise também é relevante, pois assume que um supermercado não
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irá adotar diferentes métodos de roteamento de acordo com o tamanho do pedido a ser

coletado, e sim treinar seus profissionais apenas com o de melhor desempenho.

A Tabela 10 a seguir apresenta a média e o desvio padrão amostral de passos por pro-

duto para os dois supermercados, após a exclusão de outliers, causados majoritariamente

por pedidos com apenas 1 produto localizado muito distante da origem, distorcendo os

dados. O tamanho de amostra para as análises desta seção é de 150 pedidos.

Tabela 10: Média e Desvio Padrão do Número de Passos por Produto

Supermercado A Supermercado B

Método Média Desvio Média Desvio

Traversal 8,98 3,66 10,94 4,45

Return 10,66 3,63 14,26 5,01

Midpoint 9,48 2,90 11,02 3,35

Largest Gap 9,13 3,00 10,32 3,33

Composite* 8,48 3,36 10,17 3,90

Solução Ótima 7,81 2,84 8,97 3,20

Fonte: Elaborado pelo autor

Ao realizar a ANOVA para cada um dos supermercados, obteve-se o resultado de

que para ambos pelo menos um método possui média do número de passos por produto

diferente. O Teste de Tukey foi então utilizado para identificar estas diferenças, ilustradas

nas Figuras 42 e 43 por gráficos com os Intervalos de Confiança, nos quais métodos cujos

intervalos não se sobrepõem são os que possuem médias diferentes.
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Figura 42: Intervalos de Confiança - Passos por Produto - Supermercado A

Fonte: Elaborado pelo autor

Como é posśıvel observar na Figura 42, o único método que se diferencia dos demais

é o método Return, que apresenta desempenho estatisticamente pior que todos os outros

métodos para o Supermercado A, com média acima de 10,5 passos por produto. Além

disso, considerando-se o ńıvel de significância de 5% da análise, o método Composite* é o

único que possui desempenho considerado igual à solução ótima, com os demais métodos

sendo estatisticamente iguais. Este desempenho muito bom do método Composite*, aliado

à simplicidade de sua formulação e facilidade de aplicação, o caraterizam como um método

eficiente, sendo capaz de produzir resultados bastante satisfatórios de forma simples e

direta.
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Figura 43: Intervalos de Confiança - Passos por Produto - Supermercado B

Fonte: Elaborado pelo autor

Ao analisar a Figura 43 a conclusão estat́ıstica do pior método é ainda mais clara do

que no caso anterior, visto que o método Return distancia-se muito dos demais. Porém,

para o Supermercado B, nenhum método heuŕıstico pode ser considerado igual à solução

ótima, sendo o método Composite* o de menor média, seguido de perto pelo método Lar-

gest Gap, mas sendo imposśıvel diferenciá-los estatisticamente dos demais, com exceção do

método Return. Novamente, o desempenho do método Composite* permite que este seja

classificado como um método eficiente, apresentando resultados muito bons e mantendo

a simplicidade de aplicação.

Ademais, como comentado anteriormente, é posśıvel perceber que o Supermercado B

apresenta dificuldades adicionais em relação ao Supermercado A, mesmo com os mesmos

pedidos tendo sido coletados em ambos. Após realizar uma ANOVA adicional com dois

fatores, Layout e Método de Roteamento de Coleta, constatou-se estatisticamente que o

Supermercado A apresenta menores médias do número de passos por produto, como é

posśıvel observar na Figura 44. O efeito da mudança de supermercado é sentido de forma

desproporcional entre o método Return e os demais métodos, mas não foi identificada

uma interação significativa entre os fatores.
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Figura 44: Análise de Interação de Fatores - Método de Roteamento x Supermercado

Fonte: Elaborado pelo autor

Por fim, de modo a relacionar brevemente os resultados deste caṕıtulo com os resul-

tados do caṕıtulo 4, é posśıvel perceber uma grande semelhança entre o gráfico da Figura

44 e o terceiro gráfico da Figura 28. Esta semelhança reforça a interdisciplinaridade do

tema abordado neste trabalho e corrobora a aproximação do caso real dos supermercados

com os experimentos conduzidos em cenários gerados.

5.4 Principais Insights e Recomendações Práticas

Ao longo deste caṕıtulo, foram apresentadas as diversas análises conduzidas para

entender melhor o Problema de Roteamento de Coleta aplicado a casos reais de dois

supermercados operando com vendas online, permitindo assim produzir alguns insights e

recomendações práticas acerca do tema.

A principal descoberta deste caṕıtulo é o bom desempenho do método Composite*,

que para ambos os supermercados apresenta médias de número de passos por pedido e

número de passos por produto bastante abaixo da média geral dos demais e muitas vezes se

aproxima da solução ótima. Esta descoberta, como já comentado anteriormente, corrobora

o principal resultado já apresentado no caṕıtulo 4, reforçando assim o desempenho deste

método desenvolvido no presente trabalho. Além disso, deve-se destacar também o método

Traversal, que, mesmo sendo o mais simples dentre os analisados, apresentou desempenho

muito bom e próximo do Composite*, reforçando sua eficiência.
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Os métodos Midpoint e Largest Gap apresentam desempenhos muito semelhantes em

todas as análises, fato que não é surpreendente considerando que suas formulações são

bastante similares, pois dividem os corredores em duas partes e podem acessá-los por

ambas as extremidades. Mesmo assim, é posśıvel destacar uma diferença um pouco maior

entre estes métodos no Supermercado B, que, devido ao bloco mais longo com 12 posições

de coleta, contra 9 do Supermercado A, permite que o método Largest Gap tenha mais

opções de roteamento devido à distribuição mais espaçada dos itens por corredor.

Por outro lado, esta mesma caracteŕıstica de bloco longo destaca de forma mais mar-

cante o mau desempenho do método Return no Supermercado B, com médias muito

distantes dos demais métodos. Porém, esta caracteŕıstica não se limita apenas ao Su-

permercado B, visto que em todas as análises o desempenho deste método esteve muito

abaixo dos demais, algo possivelmente já esperado considerando a formulação muitas vezes

contraintuitiva do método.

Ao comparar os dois supermercados com base nos seus layouts, foi posśıvel perceber

que o Supermercado A possui um desempenho um pouco melhor, fruto da presença de

um Corredor de Cruzamento, que apresenta ao coletor uma variedade maior de rotas.

As dificuldades causadas pelos corredores um pouco mais longos no Supermercado B

em relação ao Supermercado A não foram suficientes para contrabalancear os benef́ıcios

obtidos pela divisão do deste em dois blocos.

Por fim, retomando o propósito principal deste caṕıtulo, para que supermercados e

aplicativos de entrega de pedidos obtenham ganhos operacionais na atividade de coleta e

se destaquem por sua eficiência frente aos clientes, recomenda-se a utilização do método

Composite* no momento do roteamento de coleta. Este método produziu as menores

médias de número de passos para todos os tamanhos de pedidos e para os diferentes

layouts de supermercados, além de apresentar um gap bem pequeno para a solução ótima.

Ademais, ao se considerar que o método escolhido deverá ser ensinado aos coletores

de pedidos nos supermercados, a simplicidade e a facilidade de memorização são fatores

a serem considerados. Ainda assim, o método Composite* possui formulação bastante

simples, podendo ser facilmente memorizado pelos coletores, diferentemente dos métodos

Midpoint e Largest Gap que possuem formulações um pouco mais complexas. Desta

forma, pode-se dizer que o método Composite* é o método heuŕıstico de Roteamento de

Coleta mais eficiente analisado neste estudo.
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6 CONCLUSÕES E PERSPECTIVAS FUTURAS

6.1 Śıntese do Trabalho

Neste trabalho, tendo como objetivo avaliar o desempenho de métodos heuŕısticos de

Roteamento de Coleta em armazéns e aplicá-los em um contexto de coleta de pedidos em

supermercados com vendas online, o problema foi separado em duas partes. Na primeira

parte, os métodos heuŕısticos de Roteamento de Coleta foram avaliados de forma conjunta

a Poĺıticas de Alocação de SKUs e métodos heuŕısticos de Agrupamento de Pedidos,

de modo a gerar recomendações de aplicação bastante abrangentes para armazéns com

diversas caracteŕısticas. Já na segunda parte, houve uma simplificação do problema,

que foi trabalhado em instâncias menores, mas que apresentam um apelo prático mais

relevante, dada a origem completamente realista dos dados e aplicações.

Tratando da primeira parte do trabalho, diversos métodos heuŕısticos apresentados

na literatura foram revisitados, tendo suas particularidades descritas de maneira bastante

detalhada para claro entendimento de seu funcionamento. Além disso, um novo método

heuŕıstico de Roteamento de Coleta, chamado de Composite*, foi proposto no presente

trabalho, baseando-se em um método de Programação Dinâmica, considerado muito com-

plexo para os objetivos do trabalho.

De modo a desenvolver uma análise abrangente e completa, uma grande variedade

de cenários, retratando diversas caracteŕısticas de armazéns, foram gerados baseando-se

em dados realistas de mercado, a fim de obter resultados aderentes à realidade. To-

dos os métodos considerados no estudo foram então implementados computacionalmente

para que os experimentos pudessem ser conduzidos e os dados destes coletados para a

subsequente análise.

Posteriormente, duas análises principais foram realizadas, a primeira com o objetivo

de apresentar as melhores Poĺıticas de Alocação de SKUs, os melhores métodos de Agru-

pamento de Pedidos e os melhores métodos de Roteamento de Coleta em um contexto

geral, e a segunda com o objetivo de identificar interações entre estes três fatores que

pudessem gerar resultados melhores na operação da coleta de pedidos em um armazém.

Na primeira análise, constatou-se que a Poĺıtica de Alocação de SKUs Within-Aisle e
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o método de Roteamento de Coleta Composite* apresentaram os melhores desempenhos

individuais para estas atividades, proporcionando médias de distância total percorrida

menores que os demais, ao passo que nenhum método de Agrupamento de Pedidos ob-

teve um destaque muito grande, com boa parte dos métodos analisados estando bastante

nivelados. Na segunda análise, foi constatado a presença de uma forte interação entre a

Poĺıtica de Alocação de SKUs Across-Aisle e o método de Roteamento de Coleta Return,

que ao serem utilizados juntos, reduzem de forma significativa as distâncias percorridas

na coleta de pedidos.

Ao se tratar da segunda parte do trabalho, a única atividade da coleta de pedidos ana-

lisada foi o Roteamento de Coleta, utilizando os mesmos métodos heuŕısticos da primeira

parte. Porém, diferentemente desta, os métodos foram aplicados à demanda real de dois

supermercados, que tiveram seus layouts e distribuição de produtos mapeados, de modo a

permitir uma análise realista da operação dos estabelecimentos. Além disso, foi utilizada

uma modelagem do Problema de Roteamento de Coleta para realizar o roteamento de

coleta de cada pedido, podendo assim comparar o desempenho dos métodos heuŕısticos

com as soluções ótimas.

Neste caso, novamente duas análises principais foram realizadas, a primeira visando

definir qual método apresentava as menores distâncias totais para a coleta dos pedidos

em ambos os supermercados e quão próximo da solução ótima os métodos estariam, e a

segunda visando identificar se haveria diferença no desempenho dos métodos entre os dois

supermercados, que possuem layouts distintos.

Na primeira análise, constatou-se novamente que o método Composite* apresenta

o melhor desempenho entre os métodos de Roteamento de Coleta, estando próximo da

solução ótima para o supermercado com o layout com um bloco e sendo estatisticamente

igual à solução ótima no supermercado com layout de dois blocos. Por outro lado, o

método Return apresenta desempenhos piores que os demais para praticamente todos os

tamanhos de pedidos e para ambos os supermercados. Na segunda análise, foi constatado

que o supermercado com layout de dois blocos proporciona distâncias de coleta menores

que o supermercado com apenas um bloco.

Esta proximidade das médias das soluções ótimas, junto com a simplicidade de for-

mulação e aplicação do método Composite*, permitem que este seja tratado como um

método heuŕıstico eficiente.



108

6.2 Limitações e Desdobramentos

Tratando das conclusões obtidas neste trabalho, é importante ressaltar algumas li-

mitações das análises realizadas e apresentar alguns posśıveis desdobramentos destas.

Na primeira parte do trabalho, não foi posśıvel realizar análises para identificação de

interações de grau mais alto entre fatores, algo que poderia indicar melhorias nas soluções

conjuntas obtidas pelos métodos. Além disso, devido à complexidade do problema e ao

tempo necessário para os experimentos, alguns fatores tiveram sua quantidade de ńıveis

reduzida.

Desta forma, como desdobramento, seria interessante aumentar os ńıveis de alguns

fatores relacionados à criação dos cenários, como o número de Corredores de Cruzamento

e a Variabilidade do Número de Itens por pedido.

Na segunda parte do trabalho, as limitações estão relacionadas às adaptações que

precisaram ser feitas nos layouts dos supermercados de modo que as implementações em

Python pudessem ser utilizadas. Além disso, o agrupamento dos produtos em categorias

com o intuito de simplificar o problema pode ter limitado a variedade dos pedidos, além

de generalizar posições de coleta no supermercado.

Como desdobramentos para esta parte do trabalho, o desenvolvimento de heuŕısticas

que pudessem ser aplicadas a layouts não exclusivamente retangulares poderia trazer uma

perspectiva completamente nova para o problema, assim como a inclusão de métodos

não tão simples, como Programação Dinâmica, para avaliar o desempenho destes em

relação aos métodos utilizados. Ademais, a expansão do número de produtos considerados

aumentaria a aderência à realidade de um supermercado.

6.3 Considerações Finais

Do ponto de vista pedagógico, o presente trabalho permitiu que fossem colocados em

prática diversos conhecimentos técnicos e teóricos, dentre eles:

1) Modelagem de um problema de otimização;

2) Implementação de métodos heuŕısticos em linguagem de programação Python;

3) Desenvolvimento de um novo método heuŕıstico para a resolução do problema;

4) Condução de diversas análises comparativas e aplicação de diferentes métodos

estat́ısticos;
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5) Redação de um relatório técnico detalhado.

Por fim, como conclusão final, espera-se que as descobertas apresentadas neste traba-

lho possam ser aplicadas em situações práticas, seja na definição da melhor combinação

de métodos para a operação de um armazém, seja no treinamento de coletores em super-

mercados visando aumento de eficiência na coleta de pedidos de vendas online. Ademais,

espera-se que este trabalho contribua para o desenvolvimento de estudos mais aprofunda-

dos, gerando assim mais conhecimento sobre o tema.



110

REFERÊNCIAS
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em: 〈https://www.wh1.com/warehouse-square-footage-tips/〉.

WASCHER, G. Order Picking: A survey of planning problems and methods. Supply
Chain Management and Reverse Logistics, p. 323–347, 2004.

WOLTERS, M. Het batchen van orders in een magazijn: een vergelijking van heuristiken.
Dissertação (Mestrado) — University of Groningen (In Dutch), 1996.

ZUNIGA, C. A.; OLIVARES-BENITEZ, E.; TENAHUA, A. M.; MUJICA, M. A. A
metodology to solve the Order Batching Problem. International Federation of Automatic
Control, v. 48(3), p. 1380–1386, 2015.

https://exame.com/negocios/uber-acirra-briga-com-rappi-e-ifood-e-chega-a-supermercados/
https://exame.com/negocios/uber-acirra-briga-com-rappi-e-ifood-e-chega-a-supermercados/
https://www.wh1.com/warehouse-square-footage-tips/


115 

APÊNDICE A 

 O propósito deste apêndice é a apresentação do formulário utilizado para a coleta de dados no capítulo 

5, e é dividido em duas partes: coleta de dados comportamentais dos clientes de supermercados na pandemia 

e coleta de dados específicos de pedidos realizados de maneira online pelo respondente. Este formulário, 

desenvolvido na plataforma Google Forms, permite que o respondente envie mais de uma resposta, podendo 

assim submeter mais de um pedido que tenha realizado da maneira proposta. 
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APÊNDICE B 

O propósito deste apêndice é a apresentação das recomendações obtidas pelos experimentos realizados 

no capítulo 4, com o intuito de indicar a melhor Política de Alocação de SKUs, o melhor método de 

Agrupamento de Pedidos e o melhor método de Roteamento de Coleta para cada configuração de armazém, 

além da melhor combinação entre estes três fatores. Utiliza-se a Tabela 1 para identificar as características 

que mais se assemelham às do armazém de interesse e definir o código do cenário, composto por 6 letras, a 

ser utilizado na consulta à tabela a seguir. 

Cenário 
Melhores Métodos 

Resultado 
Melhor Combinação 

Resultado Diferença Alocação de 
SKUs 

Agrupamento de 
Pedidos 

Roteamento de 
Coleta 

Alocação de 
SKUs 

Agrupamento 
de Pedidos 

Roteamento de 
Coleta 

AAAAAA Within Aisle MNCC + RPS Largest Gap 3.425 Within Aisle MACC + RPS Largest Gap 3.410 0,4% 

AAAAAB Within Aisle MACC + RPS Largest Gap 1.664 Within Aisle MACC + RPS Largest Gap 1.664 0,0% 

AAAABA Within Aisle MACC + RPS Mipoint 2.905 Across Aisle MSPCC + MNII Mipoint 2.416 20,3% 

AAAABB Within Aisle MACC + RPS Composite* 1.601 Within Aisle MACC + RPS Composite* 1.601 0,0% 

AAABAA Within Aisle MACC + RPS Largest Gap 2.508 Within Aisle MACC + RPS Largest Gap 2.508 0,0% 

AAABAB Within Aisle MACC + RPS Largest Gap 1.346 Within Aisle MACC + RPS Largest Gap 1.346 0,0% 

AAABBA Within Aisle MACC + RPS Mipoint 2.484 Across Aisle MNLC + MNII Mipoint 2.379 4,4% 

AAABBB Within Aisle MACC + RPS Composite* 1.271 Within Aisle MACC + RPS Composite* 1.271 0,0% 

AABAAA Within Aisle MNCC + RPS Largest Gap 8.086 Within Aisle MNCC + RPS Composite* 8.043 0,5% 

AABAAB Within Aisle MNLC + RPC Composite* 3.224 Within Aisle MNLC + RPC Composite* 3.224 0,0% 

AABABA Within Aisle MNCC + RPS Composite* 7.241 Within Aisle MNCC + RPS Composite* 7.241 0,0% 

AABABB Within Aisle MNLC + RPC Composite* 3.208 Within Aisle MNCC + RPS Composite* 3.205 0,1% 

AABBAA Within Aisle MNCC + RPS Composite* 6.084 Within Aisle MNCC + RPS Composite* 6.084 0,0% 

AABBAB Within Aisle MNLC + MNCA Composite* 2.622 Within Aisle MNLC + MNCA Composite* 2.622 0,0% 

AABBBA Within Aisle MNCC + RPS Composite* 5.730 Within Aisle MNCC + RPS Composite* 5.730 0,0% 

AABBBB Within Aisle MNLC + RPC Composite* 2.635 Within Aisle MNLC + RPC Composite* 2.635 0,0% 

AACAAA Within Aisle MNCC + RPS Composite* 9.840 Within Aisle MNCC + RPS Composite* 9.840 0,0% 

AACAAB Within Aisle MNCC + RPS Composite* 3.624 Within Aisle MNCC + RPS Composite* 3.624 0,0% 

AACABA Within Aisle MACC + MNII Composite* 9.919 Within Aisle MNCC + RPS Composite* 9.737 1,9% 

AACABB Within Aisle MNCC + MNII Composite* 3.814 Within Aisle MSPCC + RPS Traversal 3.652 4,4% 

AACBAA Within Aisle MNCC + RPS Composite* 7.294 Within Aisle MNCC + RPS Composite* 7.294 0,0% 

AACBAB Within Aisle MNLC + MNCA Composite* 3.013 Within Aisle MNCC + RPS Composite* 2.996 0,6% 

AACBBA Within Aisle MNCC + RPS Composite* 7.202 Within Aisle MNCC + RPS Composite* 7.202 0,0% 

AACBBB Within Aisle MACC + MNII Composite* 3.182 Within Aisle MSPCC + RPS Composite* 3.036 4,8% 

AADAAA Within Aisle MSPCC + RPS Composite* 10.796 Within Aisle MACC + RPS Composite* 10.787 0,1% 

AADAAB Within Aisle MNLC + RCG Composite* 3.876 Within Aisle MSPCC + RPS Composite* 3.791 2,2% 

AADABA Within Aisle MNLC + MNII Composite* 10.978 Within Aisle MNCC + RPS Composite* 10.836 1,3% 

AADABB Within Aisle MNLC + RCG Composite* 3.884 Within Aisle MSPCC + RCG Composite* 3.883 0,0% 

AADBAA Within Aisle MACC + RPS Traversal 7.649 Within Aisle MACC + RPS Composite* 7.631 0,2% 

AADBAB Within Aisle MACC + RPS Composite* 3.094 Within Aisle MACC + RPS Composite* 3.094 0,0% 

AADBBA Within Aisle MACC + RPS Composite* 7.728 Within Aisle MACC + RPS Traversal 7.719 0,1% 

AADBBB Within Aisle MNCC + MNII Composite* 3.241 Within Aisle MNCC + RPS Composite* 3.156 2,7% 

ABAAAA Within Aisle MNCC + RPS Largest Gap 5.732 Within Aisle MNCC + RPS Mipoint 5.722 0,2% 

ABAAAB Within Aisle MNLC + RPC Largest Gap 2.926 Within Aisle MNCC + RPS Largest Gap 2.829 3,4% 

ABAABA Across Aisle MACC + RPS Mipoint 4.001 Across Aisle MNCC + MNII Mipoint 3.986 0,4% 

ABAABB Within Aisle MACC + RPS Composite* 2.745 Within Aisle MNCC + RPS Composite* 2.710 1,3% 

ABABAA Within Aisle MNCC + RPS Largest Gap 5.902 Within Aisle MNCC + RPS Largest Gap 5.902 0,0% 
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Cenário 
Melhores Métodos 

Resultado 
Melhor Combinação 

Resultado Diferença Alocação de 
SKUs 

Agrupamento de 
Pedidos 

Roteamento de 
Coleta 

Alocação de 
SKUs 

Agrupamento 
de Pedidos 

Roteamento de 
Coleta 

ABABAB Within Aisle MACC + RPS Largest Gap 3.105 Within Aisle MACC + RPS Largest Gap 3.105 0,0% 

ABABBA Across Aisle MACC + RPS Mipoint 3.868 Across Aisle MSPCC + RPS Mipoint 3.780 2,3% 

ABABBB Within Aisle MNCC + RPS Composite* 2.807 Within Aisle MACC + RPS Composite* 2.805 0,1% 

ABBAAA Within Aisle MNCC + RPS Largest Gap 15.056 Within Aisle MNCC + RPS Composite* 15.046 0,1% 

ABBAAB Within Aisle MNLC + MNCA Composite* 6.375 Within Aisle MNCC + RPS Composite* 6.322 0,8% 

ABBABA Within Aisle MNCC + RPS Composite* 12.795 Within Aisle MNCC + RPS Composite* 12.795 0,0% 

ABBABB Within Aisle MNLC + RPC Composite* 6.053 Within Aisle MNCC + RPS Composite* 5.957 1,6% 

ABBBAA Within Aisle MNCC + RPS Composite* 11.467 Within Aisle MNCC + RPS Composite* 11.467 0,0% 

ABBBAB Within Aisle MNLC + RPC Composite* 5.216 Within Aisle MNLC + RPC Composite* 5.216 0,0% 

ABBBBA Within Aisle MNCC + RPS Composite* 10.158 Within Aisle MNCC + RPS Composite* 10.158 0,0% 

ABBBBB Within Aisle MNCC + RPS Composite* 5.010 Within Aisle MACC + MNCA Composite* 4.925 1,7% 

ABCAAA Within Aisle MNCC + RPS Composite* 19.368 Within Aisle MNCC + RPS Composite* 19.368 0,0% 

ABCAAB Within Aisle MNCC + RPS Composite* 7.268 Within Aisle MNLC + MNCA Composite* 7.202 0,9% 

ABCABA Within Aisle MNCC + RPS Composite* 18.205 Within Aisle MSPCC + RPS Composite* 18.104 0,6% 

ABCABB Within Aisle MACC + MNII Composite* 7.358 Within Aisle MNCC + RPS Traversal 7.008 5,0% 

ABCBAA Within Aisle MACC + RPS Composite* 14.196 Within Aisle MACC + RPS Composite* 14.196 0,0% 

ABCBAB Within Aisle MNLC + MNCA Composite* 6.020 Within Aisle MNLC + MNCA Composite* 6.020 0,0% 

ABCBBA Within Aisle MNCC + RPS Composite* 13.736 Within Aisle MACC + RPS Composite* 13.706 0,2% 

ABCBBB Within Aisle MNLC + RPC Composite* 5.941 Within Aisle MNCC + RPS Traversal 5.884 1,0% 

ABDAAA Within Aisle MNCC + RPS Composite* 21.361 Within Aisle MNCC + RPS Composite* 21.361 0,0% 

ABDAAB Within Aisle MNLC + RCG Composite* 7.792 Within Aisle MACC + RPS Composite* 7.532 3,4% 

ABDABA Within Aisle MSPCC + MNII Composite* 20.971 Within Aisle MSPCC + RPS Composite* 20.700 1,3% 

ABDABB Within Aisle MNLC + RCG Composite* 7.435 Within Aisle MNCC + RPS Composite* 7.401 0,5% 

ABDBAA Within Aisle MSPCC + RPS Traversal 15.198 Within Aisle MACC + RPS Composite* 15.094 0,7% 

ABDBAB Within Aisle MNCC + RPS Composite* 6.242 Within Aisle MNCC + RPS Composite* 6.242 0,0% 

ABDBBA Within Aisle MNCC + RPS Composite* 14.779 Within Aisle MSPCC + RPS Traversal 14.673 0,7% 

ABDBBB Within Aisle MNCC + RPS Composite* 6.034 Within Aisle MSPCC + RPS Composite* 6.022 0,2% 

ACAAAA Across Aisle MNCC + RPS Largest Gap 9.756 Within Aisle MNCC + RPS Largest Gap 9.553 2,1% 

ACAAAB Within Aisle MNLC + RPC Largest Gap 4.835 Within Aisle MNCC + RPC Largest Gap 4.770 1,3% 

ACAABA Across Aisle MNCC + RPS Mipoint 5.582 Across Aisle MNCC + RPS Mipoint 5.582 0,0% 

ACAABB Across Aisle MACC + RPS Largest Gap 4.129 Across Aisle MACC + RPC Largest Gap 4.098 0,8% 

ACABAA Within Aisle MNCC + RPC Largest Gap 7.210 Within Aisle MNCC + RPS Largest Gap 7.014 2,8% 

ACABAB Within Aisle MNLC + RPC Largest Gap 4.130 Within Aisle MNCC + MNCA Largest Gap 4.119 0,3% 

ACABBA Across Aisle MNCC + RPC Largest Gap 5.080 Across Aisle MNCC + RPC Largest Gap 5.080 0,0% 

ACABBB Across Aisle MNCC + RPC Composite* 3.488 Across Aisle MNCC + RPC Composite* 3.488 0,0% 

ACBAAA Within Aisle MNCC + RPS Largest Gap 25.863 Within Aisle MNCC + RPS Largest Gap 25.863 0,0% 

ACBAAB Within Aisle MNLC + MNCA Composite* 11.113 Within Aisle MNLC + RPC Composite* 11.102 0,1% 

ACBABA Within Aisle MNCC + RPS Composite* 21.208 Within Aisle MNCC + RPS Composite* 21.208 0,0% 

ACBABB Within Aisle MNLC + RPC Composite* 10.152 Within Aisle MNLC + MNCA Composite* 10.096 0,6% 

ACBBAA Within Aisle MNLC + RPC Composite* 20.083 Within Aisle MNCC + RPS Composite* 20.026 0,3% 

ACBBAB Within Aisle MNLC + RPC Composite* 9.020 Within Aisle MNLC + RPC Composite* 9.020 0,0% 

ACBBBA Within Aisle MNCC + RPS Composite* 17.178 Within Aisle MNCC + RPS Composite* 17.178 0,0% 

ACBBBB Within Aisle MNLC + RPC Composite* 8.439 Within Aisle MACC + RPC Composite* 8.388 0,6% 

ACCAAA Within Aisle MNCC + RPS Composite* 33.972 Within Aisle MNCC + RPS Composite* 33.972 0,0% 

ACCAAB Within Aisle MNCC + RPS Traversal 12.535 Within Aisle MNCC + RPS Composite* 12.497 0,3% 
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Cenário 
Melhores Métodos 

Resultado 
Melhor Combinação 

Resultado Diferença Alocação de 
SKUs 

Agrupamento de 
Pedidos 

Roteamento de 
Coleta 

Alocação de 
SKUs 

Agrupamento 
de Pedidos 

Roteamento de 
Coleta 

ACCABA Within Aisle MNCC + RPS Composite* 31.172 Within Aisle MNCC + RPS Composite* 31.172 0,0% 

ACCABB Within Aisle MNCC + RPS Traversal 12.041 Within Aisle MACC + RPS Traversal 12.027 0,1% 

ACCBAA Within Aisle MNCC + RPS Composite* 24.728 Within Aisle MNCC + RPS Composite* 24.728 0,0% 

ACCBAB Within Aisle MNLC + RPC Composite* 10.494 Within Aisle MSPCC + RPS Composite* 10.470 0,2% 

ACCBBA Within Aisle MNCC + RPS Composite* 23.543 Within Aisle MSPCC + RPS Composite* 23.488 0,2% 

ACCBBB Within Aisle MNCC + RPS Composite* 10.020 Within Aisle MNLC + MNCA Traversal 9.923 1,0% 

ACDAAA Within Aisle MNCC + RPS Traversal 37.514 Within Aisle MNCC + RPS Composite* 37.286 0,6% 

ACDAAB Within Aisle MNLC + RCG Composite* 13.614 Within Aisle MACC + RPS Composite* 13.212 3,0% 

ACDABA Within Aisle MSPCC + MNII Composite* 36.012 Within Aisle MNCC + RPS Composite* 35.582 1,2% 

ACDABB Within Aisle MNLC + RCG Composite* 12.684 Within Aisle MNLC + RCG Traversal 12.643 0,3% 

ACDBAA Within Aisle MACC + RPS Traversal 27.650 Within Aisle MSPCC + RPS Composite* 27.446 0,7% 

ACDBAB Within Aisle MNCC + RPS Composite* 10.912 Within Aisle MNCC + RPS Composite* 10.912 0,0% 

ACDBBA Within Aisle MSPCC + RPS Composite* 25.524 Within Aisle MSPCC + RPS Traversal 25.264 1,0% 

ACDBBB Within Aisle MNCC + RPS Traversal 10.406 Within Aisle MSPCC + RPS Composite* 10.380 0,3% 

ADAAAA Across Aisle MNCC + RPS Largest Gap 16.299 Across Aisle MNLC + RPC Largest Gap 16.189 0,7% 

ADAAAB Within Aisle MNLC + RPC Largest Gap 8.627 Within Aisle MNLC + RPC Largest Gap 8.627 0,0% 

ADAABA Across Aisle MNLC + RPS Largest Gap 10.438 Across Aisle MSPCC + RPS Largest Gap 10.178 2,6% 

ADAABB Across Aisle MNLC + RPC Largest Gap 7.135 Across Aisle MACC + RPS Largest Gap 6.989 2,1% 

ADABAA Across Aisle MNCC + MNCA Largest Gap 13.238 Within Aisle MNLC + RPC Largest Gap 12.746 3,9% 

ADABAB Within Aisle MNLC + MNCA Largest Gap 7.381 Within Aisle MNLC + MNCA Largest Gap 7.381 0,0% 

ADABBA Across Aisle MNLC + RPS Largest Gap 8.756 Across Aisle MNLC + RPC Largest Gap 8.593 1,9% 

ADABBB Across Aisle MNCC + RPC Largest Gap 6.433 Across Aisle MNCC + RPC Composite* 6.013 7,0% 

ADBAAA Within Aisle MNCC + RPS Largest Gap 48.049 Within Aisle MNCC + RPS Largest Gap 48.049 0,0% 

ADBAAB Within Aisle MNLC + MNCA Composite* 20.726 Within Aisle MNLC + MNCA Composite* 20.726 0,0% 

ADBABA Across Aisle MNCC + RPS Largest Gap 38.569 Within Aisle MNCC + RPS Largest Gap 37.910 1,7% 

ADBABB Within Aisle MNLC + RPC Composite* 19.182 Within Aisle MNLC + MNCA Composite* 18.946 1,2% 

ADBBAA Within Aisle MNLC + RPC Composite* 37.919 Within Aisle MACC + MNCA Composite* 37.894 0,1% 

ADBBAB Within Aisle MNLC + MNCA Composite* 16.804 Within Aisle MNLC + RPC Composite* 16.703 0,6% 

ADBBBA Within Aisle MNCC + RPS Largest Gap 31.572 Within Aisle MNCC + RPS Composite* 31.306 0,8% 

ADBBBB Within Aisle MNLC + RPC Composite* 15.792 Within Aisle MACC + RPC Composite* 15.667 0,8% 

ADCAAA Within Aisle MNCC + RPS Composite* 64.246 Within Aisle MSPCC + RPS Composite* 64.130 0,2% 

ADCAAB Within Aisle MNCC + RPS Composite* 23.143 Within Aisle MNCC + RPS Composite* 23.143 0,0% 

ADCABA Within Aisle MNCC + RPS Composite* 57.123 Within Aisle MNCC + RPS Composite* 57.123 0,0% 

ADCABB Within Aisle MNCC + RPS Composite* 22.416 Within Aisle MNCC + RPS Traversal 22.385 0,1% 

ADCBAA Within Aisle MSPCC + RPS Composite* 47.690 Within Aisle MNCC + RPS Composite* 47.650 0,1% 

ADCBAB Within Aisle MNCC + RPS Composite* 19.312 Within Aisle MNCC + RPS Composite* 19.312 0,0% 

ADCBBA Within Aisle MNCC + RPS Composite* 43.692 Within Aisle MNCC + RPS Composite* 43.692 0,0% 

ADCBBB Within Aisle MNLC + MNCA Traversal 18.476 Within Aisle MNCC + RPS Traversal 18.424 0,3% 

ADDAAA Within Aisle MNCC + RPS Traversal 70.246 Within Aisle MNCC + RPS Composite* 70.046 0,3% 

ADDAAB Within Aisle MNLC + RCG Composite* 25.999 Within Aisle MNCC + RPS Composite* 25.186 3,2% 

ADDABA Within Aisle MACC + MNII Composite* 67.240 Within Aisle MNCC + RPS Composite* 66.585 1,0% 

ADDABB Within Aisle MACC + MNII Composite* 23.841 Within Aisle MACC + RCG Traversal 23.534 1,3% 

ADDBAA Within Aisle MNCC + RPS Traversal 50.088 Within Aisle MNCC + RPS Composite* 50.000 0,2% 

ADDBAB Within Aisle MNCC + RPS Composite* 20.804 Within Aisle MACC + RPS Composite* 20.732 0,4% 

ADDBBA Within Aisle MSPCC + RPS Composite* 48.557 Within Aisle MNCC + RPS Traversal 48.141 0,9% 
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ADDBBB Within Aisle MNCC + RPS Traversal 19.354 Within Aisle MNCC + RPS Composite* 19.310 0,2% 

BAAAAA Within Aisle MACC + RPS Largest Gap 6.926 Within Aisle MACC + RPS Largest Gap 6.926 0,0% 

BAAAAB Within Aisle MSPCC + RPS Largest Gap 3.670 Within Aisle MACC + RPS Largest Gap 3.630 1,1% 

BAAABA Within Aisle MSPCC + RPS Mipoint 5.924 Across Aisle MNCC + RPC Mipoint 5.405 9,6% 

BAAABB Within Aisle MACC + RPS Composite* 3.288 Within Aisle MACC + RPS Composite* 3.288 0,0% 

BAABAA Within Aisle MSPCC + RPS Largest Gap 5.173 Within Aisle MACC + RPS Largest Gap 5.158 0,3% 

BAABAB Within Aisle MSPCC + RPS Largest Gap 2.809 Within Aisle MSPCC + RPS Largest Gap 2.809 0,0% 

BAABBA Within Aisle MSPCC + RPS Mipoint 5.030 Within Aisle MACC + RPS Composite* 4.870 3,3% 

BAABBB Within Aisle MSPCC + RPS Composite* 2.632 Within Aisle MSPCC + RPS Composite* 2.632 0,0% 

BABAAA Within Aisle MSPCC + RPS Largest Gap 15.197 Within Aisle MSPCC + RPS Largest Gap 15.197 0,0% 

BABAAB Within Aisle MNLC + MNCA Composite* 7.349 Within Aisle MNLC + MNCA Composite* 7.349 0,0% 

BABABA Within Aisle MACC + RPS Composite* 13.910 Within Aisle MSPCC + RPS Composite* 13.893 0,1% 

BABABB Within Aisle MNCC + RPC Composite* 6.818 Within Aisle MNCC + RPC Composite* 6.818 0,0% 

BABBAA Within Aisle MNLC + MNCA Largest Gap 12.420 Within Aisle MACC + RPS Largest Gap 12.284 1,1% 

BABBAB Within Aisle MNLC + MNCA Composite* 6.104 Within Aisle MNCC + RPC Composite* 6.081 0,4% 

BABBBA Within Aisle MACC + RPS Composite* 10.971 Within Aisle MACC + RPS Composite* 10.971 0,0% 

BABBBB Within Aisle MNCC + RPC Composite* 5.899 Within Aisle MNLC + RPC Composite* 5.888 0,2% 

BACAAA Within Aisle MNLC + MNCA Largest Gap 22.422 Within Aisle MNCC + RPS Composite* 22.264 0,7% 

BACAAB Within Aisle MNLC + RPC Composite* 8.630 Within Aisle MNLC + RPC Composite* 8.630 0,0% 

BACABA Within Aisle MNLC + RPC Composite* 19.925 Within Aisle MNCC + RPS Composite* 19.848 0,4% 

BACABB Within Aisle MACC + RPC Composite* 8.725 Within Aisle MNLC + RPC Composite* 8.642 1,0% 

BACBAA Within Aisle MNLC + MNCA Composite* 17.364 Within Aisle MNLC + RPC Composite* 17.255 0,6% 

BACBAB Within Aisle MNCC + MNCA Composite* 7.414 Within Aisle MNCC + MNCA Composite* 7.414 0,0% 

BACBBA Within Aisle MNCC + RPS Composite* 15.810 Within Aisle MACC + RPS Composite* 15.724 0,5% 

BACBBB Within Aisle MSPCC + MNCA Composite* 7.521 Within Aisle MNLC + RPC Composite* 7.486 0,5% 

BADAAA Within Aisle MNLC + MNCA Composite* 26.025 Within Aisle MNCC + RPS Composite* 25.929 0,4% 

BADAAB Within Aisle MACC + MNCA Composite* 9.477 Within Aisle MACC + MNCA Composite* 9.477 0,0% 

BADABA Within Aisle MNLC + MNII Composite* 24.924 Within Aisle MNCC + RPS Composite* 24.645 1,1% 

BADABB Within Aisle MACC + RPC Composite* 9.823 Within Aisle MNCC + RPS Composite* 9.734 0,9% 

BADBAA Within Aisle MNLC + RPC Composite* 19.267 Within Aisle MNCC + MNCA Composite* 19.171 0,5% 

BADBAB Within Aisle MACC + MNCA Composite* 7.966 Within Aisle MNLC + MNCA Composite* 7.886 1,0% 

BADBBA Within Aisle MACC + MNII Composite* 18.787 Within Aisle MACC + RPS Composite* 18.362 2,3% 

BADBBB Within Aisle MNLC + MNCA Composite* 8.072 Within Aisle MNLC + MNCA Composite* 8.072 0,0% 

BBAAAA Within Aisle MACC + RPS Largest Gap 9.773 Within Aisle MNCC + RPS Largest Gap 9.739 0,3% 

BBAAAB Within Aisle MSPCC + RPS Largest Gap 5.505 Within Aisle MSPCC + RPS Largest Gap 5.505 0,0% 

BBAABA Within Aisle MSPCC + RPS Mipoint 7.940 Across Aisle MNCC + RPS Mipoint 6.951 14,2% 

BBAABB Within Aisle MACC + RPS Composite* 4.892 Within Aisle MSPCC + RPS Composite* 4.883 0,2% 

BBABAA Within Aisle MACC + RPS Largest Gap 7.760 Within Aisle MACC + RPS Largest Gap 7.760 0,0% 

BBABAB Within Aisle MNLC + RPC Largest Gap 4.744 Within Aisle MACC + RPS Largest Gap 4.648 2,1% 

BBABBA Within Aisle MACC + RPS Largest Gap 6.820 Across Aisle MNLC + RPS Largest Gap 6.680 2,1% 

BBABBB Within Aisle MSPCC + RPS Composite* 4.081 Within Aisle MACC + RPS Composite* 4.067 0,3% 

BBBAAA Within Aisle MNCC + MNCA Largest Gap 25.204 Within Aisle MSPCC + RPS Largest Gap 24.997 0,8% 

BBBAAB Within Aisle MNLC + MNCA Largest Gap 14.106 Within Aisle MNCC + MNCA Composite* 13.490 4,6% 

BBBABA Within Aisle MACC + RPS Composite* 21.392 Within Aisle MSPCC + RPS Composite* 21.325 0,3% 

BBBABB Within Aisle MNCC + MNCA Composite* 11.550 Within Aisle MNLC + RPC Composite* 11.510 0,3% 
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BBBBAA Within Aisle MNCC + MNCA Largest Gap 21.218 Within Aisle MNCC + MNCA Largest Gap 21.218 0,0% 

BBBBAB Within Aisle MNLC + MNCA Composite* 11.328 Within Aisle MNLC + MNCA Composite* 11.328 0,0% 

BBBBBA Within Aisle MNLC + MNCA Composite* 17.736 Within Aisle MACC + RPS Composite* 17.540 1,1% 

BBBBBB Within Aisle MNLC + MNCA Composite* 10.101 Within Aisle MNCC + MNCA Composite* 10.057 0,4% 

BBCAAA Within Aisle MNLC + MNCA Largest Gap 40.617 Within Aisle MACC + RPS Largest Gap 40.464 0,4% 

BBCAAB Within Aisle MNLC + RPC Composite* 16.576 Within Aisle MNLC + MNCA Composite* 16.497 0,5% 

BBCABA Within Aisle MNLC + RPC Composite* 33.816 Within Aisle MNCC + RPS Composite* 33.768 0,1% 

BBCABB Within Aisle MSPCC + RPC Composite* 15.890 Within Aisle MNCC + MNCA Composite* 15.819 0,4% 

BBCBAA Within Aisle MNLC + MNCA Composite* 33.131 Within Aisle MNLC + MNCA Composite* 33.131 0,0% 

BBCBAB Within Aisle MNLC + MNCA Composite* 14.040 Within Aisle MNLC + MNCA Composite* 14.040 0,0% 

BBCBBA Within Aisle MNLC + MNCA Composite* 27.321 Within Aisle MNLC + MNCA Composite* 27.321 0,0% 

BBCBBB Within Aisle MSPCC + MNCA Composite* 13.690 Within Aisle MSPCC + MNCA Composite* 13.690 0,0% 

BBDAAA Within Aisle MNLC + RPC Composite* 49.868 Within Aisle MNCC + RPS Composite* 49.770 0,2% 

BBDAAB Within Aisle MACC + MNCA Composite* 18.509 Within Aisle MACC + MNCA Composite* 18.509 0,0% 

BBDABA Within Aisle MNCC + RPS Composite* 44.670 Within Aisle MNCC + RPS Composite* 44.670 0,0% 

BBDABB Within Aisle MACC + RPS Composite* 18.448 Within Aisle MNCC + RPS Composite* 18.371 0,4% 

BBDBAA Within Aisle MNLC + RPC Composite* 36.719 Within Aisle MSPCC + MNCA Composite* 36.609 0,3% 

BBDBAB Within Aisle MNLC + MNCA Composite* 15.302 Within Aisle MNLC + MNCA Composite* 15.302 0,0% 

BBDBBA Within Aisle MNLC + RPC Composite* 34.441 Within Aisle MSPCC + RPS Composite* 34.344 0,3% 

BBDBBB Within Aisle MNLC + MNCA Composite* 15.353 Within Aisle MNLC + MNCA Composite* 15.353 0,0% 

BCAAAA Within Aisle MNCC + RPS Largest Gap 13.932 Within Aisle MNCC + RPS Largest Gap 13.932 0,0% 

BCAAAB Within Aisle MNLC + MNCA Largest Gap 8.577 Within Aisle MNCC + RPS Largest Gap 8.318 3,1% 

BCAABA Within Aisle MNCC + RPS Mipoint 10.778 Across Aisle MNCC + RPS Mipoint 9.346 15,3% 

BCAABB Within Aisle MSPCC + RPS Composite* 7.045 Within Aisle MNCC + RPS Composite* 7.022 0,3% 

BCABAA Within Aisle MNLC + RPC Largest Gap 11.233 Within Aisle MNCC + RPS Largest Gap 11.115 1,1% 

BCABAB Within Aisle MNLC + MNCA Largest Gap 7.345 Within Aisle MNLC + RPC Largest Gap 7.075 3,8% 

BCABBA Within Aisle MSPCC + RPS Largest Gap 9.114 Across Aisle MSPCC + RPS Largest Gap 8.746 4,2% 

BCABBB Within Aisle MNLC + RPC Composite* 6.097 Within Aisle MNCC + RPC Composite* 6.047 0,8% 

BCBAAA Across Aisle MSPCC + MNCA Largest Gap 42.505 Within Aisle MACC + RPS Largest Gap 39.671 7,1% 

BCBAAB Across Aisle MACC + MNCA Largest Gap 24.760 Within Aisle MNCC + RPC Composite* 22.384 10,6% 

BCBABA Within Aisle MNCC + RPC Composite* 32.919 Within Aisle MNCC + RPS Composite* 32.700 0,7% 

BCBABB Within Aisle MNLC + MNCA Composite* 18.889 Within Aisle MNCC + MNCA Composite* 18.703 1,0% 

BCBBAA Within Aisle MNCC + MNCA Largest Gap 34.052 Within Aisle MNCC + RPC Largest Gap 33.976 0,2% 

BCBBAB Within Aisle MNLC + MNCA Composite* 18.985 Within Aisle MSPCC + MNCA Composite* 18.834 0,8% 

BCBBBA Within Aisle MNLC + RPC Composite* 27.311 Within Aisle MNLC + RPC Composite* 27.311 0,0% 

BCBBBB Across Aisle MSPCC + MNCA Composite* 16.585 Across Aisle MNLC + MNCA Composite* 16.542 0,3% 

BCCAAA Within Aisle MNLC + MNCA Largest Gap 68.094 Within Aisle MNLC + MNCA Largest Gap 68.094 0,0% 

BCCAAB Within Aisle MNLC + RPC Composite* 28.634 Within Aisle MNLC + RPC Composite* 28.634 0,0% 

BCCABA Within Aisle MNCC + RPC Composite* 54.520 Within Aisle MNCC + RPC Composite* 54.520 0,0% 

BCCABB Within Aisle MSPCC + RPC Composite* 26.533 Within Aisle MNLC + RPC Composite* 26.470 0,2% 

BCCBAA Within Aisle MNLC + MNCA Composite* 55.012 Within Aisle MNLC + MNCA Composite* 55.012 0,0% 

BCCBAB Within Aisle MNLC + MNCA Composite* 24.304 Within Aisle MNLC + MNCA Composite* 24.304 0,0% 

BCCBBA Within Aisle MNLC + MNCA Composite* 45.485 Within Aisle MSPCC + RPS Composite* 45.395 0,2% 

BCCBBB Within Aisle MACC + MNCA Composite* 23.211 Within Aisle MACC + MNCA Composite* 23.211 0,0% 

BCDAAA Within Aisle MNLC + RPC Composite* 84.736 Within Aisle MNCC + RPS Composite* 84.553 0,2% 
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BCDAAB Within Aisle MACC + MNCA Composite* 32.130 Within Aisle MACC + MNCA Composite* 32.130 0,0% 

BCDABA Within Aisle MACC + RPC Composite* 73.769 Within Aisle MNLC + RPC Composite* 73.707 0,1% 

BCDABB Within Aisle MACC + RPS Composite* 31.460 Within Aisle MNLC + RPS Composite* 31.197 0,8% 

BCDBAA Within Aisle MNLC + RPC Composite* 62.772 Within Aisle MSPCC + MNCA Composite* 62.564 0,3% 

BCDBAB Within Aisle MNLC + MNCA Composite* 26.360 Within Aisle MNLC + MNCA Composite* 26.360 0,0% 

BCDBBA Across Aisle MNLC + RPC Composite* 59.342 Within Aisle MACC + RPS Composite* 58.062 2,2% 

BCDBBB Within Aisle MACC + RPC Composite* 26.119 Within Aisle MNLC + RPC Composite* 25.969 0,6% 

BDAAAA Across Aisle MNLC + RPS Largest Gap 23.381 Within Aisle MNLC + RPS Largest Gap 22.849 2,3% 

BDAAAB Across Aisle MNLC + MNCA Largest Gap 15.141 Within Aisle MNLC + MNCA Largest Gap 14.195 6,7% 

BDAABA Across Aisle MNCC + RPC Largest Gap 12.868 Across Aisle MNCC + RPC Largest Gap 12.868 0,0% 

BDAABB Across Aisle MNCC + RPC Largest Gap 11.277 Across Aisle MSPCC + RPS Largest Gap 11.174 0,9% 

BDABAA Across Aisle MNLC + MNCA Largest Gap 19.282 Within Aisle MNCC + RPC Largest Gap 18.354 5,1% 

BDABAB Across Aisle MNCC + MNCA Largest Gap 13.308 Within Aisle MNCC + RPC Largest Gap 12.486 6,6% 

BDABBA Across Aisle MACC + RPS Largest Gap 12.782 Across Aisle MACC + RPS Largest Gap 12.782 0,0% 

BDABBB Across Aisle MNCC + RPC Largest Gap 10.236 Across Aisle MSPCC + MNCA Composite* 9.825 4,2% 

BDBAAA Across Aisle MSPCC + MNCA Largest Gap 74.991 Within Aisle MSPCC + MNCA Largest Gap 70.161 6,9% 

BDBAAB Within Aisle MNCC + MNCA Largest Gap 43.264 Within Aisle MNCC + MNCA Composite* 41.304 4,7% 

BDBABA Across Aisle MNCC + RPC Largest Gap 54.831 Within Aisle MACC + RPS Largest Gap 53.559 2,4% 

BDBABB Across Aisle MNCC + MNCA Largest Gap 34.716 Across Aisle MACC + MNCA Composite* 33.113 4,8% 

BDBBAA Across Aisle MNLC + MNCA Largest Gap 63.126 Within Aisle MNLC + MNCA Largest Gap 60.464 4,4% 

BDBBAB Within Aisle MNCC + MNCA Composite* 35.101 Within Aisle MNCC + MNCA Composite* 35.101 0,0% 

BDBBBA Across Aisle MNLC + MNCA Largest Gap 47.298 Within Aisle MNLC + MNCA Largest Gap 46.460 1,8% 

BDBBBB Across Aisle MNLC + MNCA Largest Gap 31.755 Across Aisle MNCC + MNCA Composite* 29.684 7,0% 

BDCAAA Within Aisle MNLC + MNCA Largest Gap 125.416 Within Aisle MNCC + RPS Largest Gap 124.879 0,4% 

BDCAAB Within Aisle MACC + MNCA Composite* 53.444 Within Aisle MNLC + RPC Composite* 53.347 0,2% 

BDCABA Across Aisle MSPCC + RPC Largest Gap 98.230 Within Aisle MNCC + RPC Largest Gap 94.494 4,0% 

BDCABB Within Aisle MACC + MNCA Composite* 48.760 Within Aisle MACC + MNCA Composite* 48.760 0,0% 

BDCBAA Within Aisle MNLC + MNCA Largest Gap 105.702 Within Aisle MNCC + MNCA Composite* 101.430 4,2% 

BDCBAB Within Aisle MNCC + MNCA Composite* 45.580 Within Aisle MNLC + RPC Composite* 45.558 0,0% 

BDCBBA Within Aisle MNLC + MNCA Largest Gap 81.538 Within Aisle MNLC + MNCA Largest Gap 81.538 0,0% 

BDCBBB Within Aisle MSPCC + RPC Composite* 42.939 Within Aisle MNCC + MNCA Composite* 42.508 1,0% 

BDDAAA Within Aisle MNLC + RPC Composite* 159.015 Within Aisle MACC + RPC Composite* 158.610 0,3% 

BDDAAB Within Aisle MNLC + RPC Composite* 59.581 Within Aisle MNLC + MNCA Composite* 59.400 0,3% 

BDDABA Across Aisle MACC + RPC Composite* 137.816 Within Aisle MNCC + RPS Composite* 135.404 1,8% 

BDDABB Within Aisle MACC + MNCA Composite* 58.311 Within Aisle MACC + RPC Composite* 58.212 0,2% 

BDDBAA Within Aisle MNLC + RPC Composite* 119.166 Within Aisle MNLC + RPC Composite* 119.166 0,0% 

BDDBAB Within Aisle MSPCC + RPC Composite* 50.191 Within Aisle MSPCC + RPC Composite* 50.191 0,0% 

BDDBBA Within Aisle MNLC + RPC Composite* 106.099 Within Aisle MSPCC + MNCA Composite* 105.678 0,4% 

BDDBBB Within Aisle MNLC + RPC Composite* 48.346 Within Aisle MACC + MNCA Composite* 48.332 0,0% 

CAAAAA Within Aisle MSPCC + RPS Largest Gap 13.350 Within Aisle MSPCC + RPS Largest Gap 13.350 0,0% 

CAAAAB Within Aisle MSPCC + RPS Largest Gap 6.128 Within Aisle MSPCC + RPS Largest Gap 6.128 0,0% 

CAAABA Within Aisle MACC + RPS Mipoint 10.921 Across Aisle MNLC + RPS Largest Gap 10.845 0,7% 

CAAABB Within Aisle MSPCC + RPS Composite* 5.730 Within Aisle MSPCC + RPS Composite* 5.730 0,0% 

CAABAA Within Aisle MSPCC + RPS Largest Gap 9.284 Within Aisle MSPCC + RPS Largest Gap 9.284 0,0% 

CAABAB Within Aisle MSPCC + RPS Largest Gap 4.870 Within Aisle MSPCC + RPS Largest Gap 4.870 0,0% 
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CAABBA Within Aisle MSPCC + RPS Mipoint 9.315 Within Aisle MACC + RPS Composite* 8.849 5,3% 

CAABBB Within Aisle MSPCC + RPS Composite* 4.600 Within Aisle MSPCC + RPS Composite* 4.600 0,0% 

CABAAA Within Aisle MSPCC + RPS Largest Gap 24.800 Within Aisle MACC + RPS Largest Gap 24.734 0,3% 

CABAAB Within Aisle MNLC + MNCA Largest Gap 12.524 Within Aisle MNLC + RPC Largest Gap 12.475 0,4% 

CABABA Within Aisle MSPCC + RPS Composite* 23.033 Within Aisle MACC + RPS Composite* 22.994 0,2% 

CABABB Within Aisle MNLC + RPC Composite* 11.358 Within Aisle MACC + RPS Composite* 11.352 0,1% 

CABBAA Within Aisle MNLC + MNCA Largest Gap 19.770 Within Aisle MACC + RPS Largest Gap 19.225 2,8% 

CABBAB Within Aisle MNLC + MNCA Largest Gap 10.913 Within Aisle MNCC + RPC Largest Gap 10.736 1,7% 

CABBBA Within Aisle MACC + RPS Composite* 17.684 Within Aisle MACC + RPS Composite* 17.684 0,0% 

CABBBB Within Aisle MNCC + RPC Composite* 9.674 Within Aisle MNCC + RPC Composite* 9.674 0,0% 

CACAAA Within Aisle MNCC + MNCA Largest Gap 35.943 Within Aisle MACC + RPS Largest Gap 35.464 1,4% 

CACAAB Within Aisle MNLC + MNCA Composite* 16.127 Within Aisle MNLC + MNCA Composite* 16.127 0,0% 

CACABA Within Aisle MACC + RPS Composite* 32.306 Within Aisle MACC + RPS Composite* 32.306 0,0% 

CACABB Within Aisle MNLC + RPC Composite* 15.201 Within Aisle MNCC + RPC Composite* 15.137 0,4% 

CACBAA Within Aisle MACC + RPS Largest Gap 28.864 Within Aisle MACC + RPS Largest Gap 28.864 0,0% 

CACBAB Within Aisle MNCC + MNCA Composite* 14.224 Within Aisle MNCC + RPC Composite* 14.148 0,5% 

CACBBA Within Aisle MNCC + MNII Composite* 26.947 Within Aisle MNCC + RPS Composite* 26.481 1,8% 

CACBBB Within Aisle MNLC + MNII Composite* 13.744 Within Aisle MSPCC + RPC Composite* 13.493 1,9% 

CADAAA Within Aisle MNCC + MNCA Largest Gap 46.564 Within Aisle MNCC + RPS Largest Gap 46.337 0,5% 

CADAAB Within Aisle MNCC + RPC Composite* 18.342 Within Aisle MSPCC + MNCA Composite* 18.259 0,5% 

CADABA Within Aisle MSPCC + MNII Composite* 41.797 Within Aisle MNCC + RPS Composite* 41.553 0,6% 

CADABB Within Aisle MNLC + RPC Composite* 18.050 Within Aisle MNLC + RPC Composite* 18.050 0,0% 

CADBAA Within Aisle MNLC + MNCA Composite* 36.082 Within Aisle MNCC + RPS Composite* 36.029 0,1% 

CADBAB Within Aisle MACC + MNCA Composite* 15.361 Within Aisle MACC + MNCA Composite* 15.361 0,0% 

CADBBA Within Aisle MACC + MNII Composite* 32.572 Within Aisle MNLC + MNCA Composite* 32.386 0,6% 

CADBBB Within Aisle MNCC + MNCA Composite* 15.623 Within Aisle MNLC + MNCA Composite* 15.556 0,4% 

CBAAAA Within Aisle MSPCC + RPS Largest Gap 15.712 Within Aisle MACC + RPS Mipoint 15.619 0,6% 

CBAAAB Within Aisle MSPCC + RPS Largest Gap 8.698 Within Aisle MSPCC + RPS Largest Gap 8.698 0,0% 

CBAABA Within Aisle MSPCC + RPS Mipoint 13.166 Across Aisle MSPCC + RPS Mipoint 11.708 12,5% 

CBAABB Within Aisle MSPCC + RPS Composite* 7.587 Within Aisle MSPCC + RPS Composite* 7.587 0,0% 

CBABAA Within Aisle MSPCC + RPS Largest Gap 11.912 Within Aisle MSPCC + RPS Largest Gap 11.912 0,0% 

CBABAB Within Aisle MSPCC + RPS Largest Gap 6.834 Within Aisle MSPCC + RPS Largest Gap 6.834 0,0% 

CBABBA Within Aisle MSPCC + RPS Largest Gap 11.220 Within Aisle MSPCC + RPS Composite* 10.641 5,4% 

CBABBB Within Aisle MSPCC + RPS Composite* 6.172 Within Aisle MSPCC + RPS Composite* 6.172 0,0% 

CBBAAA Within Aisle MNCC + MNCA Largest Gap 36.879 Within Aisle MACC + RPS Largest Gap 36.211 1,8% 

CBBAAB Within Aisle MNLC + MNCA Largest Gap 20.572 Within Aisle MNLC + MNCA Largest Gap 20.572 0,0% 

CBBABA Within Aisle MACC + RPS Composite* 31.275 Within Aisle MACC + RPS Composite* 31.275 0,0% 

CBBABB Within Aisle MNLC + MNCA Composite* 17.717 Within Aisle MNLC + RPC Composite* 17.558 0,9% 

CBBBAA Within Aisle MNLC + MNCA Largest Gap 30.005 Within Aisle MACC + RPS Largest Gap 29.674 1,1% 

CBBBAB Within Aisle MSPCC + MNCA Largest Gap 18.200 Within Aisle MSPCC + MNCA Largest Gap 18.200 0,0% 

CBBBBA Within Aisle MACC + RPS Composite* 25.973 Within Aisle MACC + RPS Composite* 25.973 0,0% 

CBBBBB Within Aisle MNCC + MNCA Composite* 15.653 Within Aisle MNLC + MNCA Composite* 15.607 0,3% 

CBCAAA Within Aisle MNCC + MNCA Largest Gap 58.393 Within Aisle MACC + RPS Largest Gap 58.131 0,5% 

CBCAAB Within Aisle MSPCC + MNCA Composite* 30.064 Within Aisle MNLC + MNCA Composite* 29.618 1,5% 

CBCABA Within Aisle MNLC + MNCA Composite* 50.166 Within Aisle MACC + RPS Composite* 49.715 0,9% 
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CBCABB Within Aisle MNLC + RPC Composite* 26.160 Within Aisle MNLC + RPC Composite* 26.160 0,0% 

CBCBAA Within Aisle MNCC + MNCA Largest Gap 49.363 Within Aisle MNLC + MNCA Largest Gap 48.984 0,8% 

CBCBAB Within Aisle MSPCC + MNCA Composite* 26.453 Within Aisle MNLC + RPC Composite* 26.420 0,1% 

CBCBBA Within Aisle MSPCC + RPS Composite* 42.360 Within Aisle MNCC + RPS Composite* 42.246 0,3% 

CBCBBB Within Aisle MNCC + MNCA Composite* 23.669 Within Aisle MNLC + MNCA Composite* 23.574 0,4% 

CBDAAA Within Aisle MSPCC + MNCA Largest Gap 83.031 Within Aisle MNLC + RPC Largest Gap 82.603 0,5% 

CBDAAB Within Aisle MNLC + RPC Composite* 34.323 Within Aisle MNLC + RPC Composite* 34.323 0,0% 

CBDABA Within Aisle MNLC + RPC Composite* 69.564 Within Aisle MNCC + RPS Composite* 69.378 0,3% 

CBDABB Within Aisle MNLC + RPC Composite* 32.786 Within Aisle MNLC + RPC Composite* 32.786 0,0% 

CBDBAA Within Aisle MNLC + MNCA Composite* 65.731 Within Aisle MNLC + MNCA Composite* 65.731 0,0% 

CBDBAB Within Aisle MNCC + MNCA Composite* 29.752 Within Aisle MSPCC + MNCA Composite* 29.688 0,2% 

CBDBBA Within Aisle MNLC + MNCA Composite* 55.785 Within Aisle MNLC + MNCA Composite* 55.785 0,0% 

CBDBBB Within Aisle MNCC + RPC Composite* 28.438 Within Aisle MNCC + RPC Composite* 28.438 0,0% 

CCAAAA Within Aisle MSPCC + RPS Largest Gap 20.488 Within Aisle MSPCC + RPS Largest Gap 20.488 0,0% 

CCAAAB Within Aisle MSPCC + RPS Largest Gap 12.146 Within Aisle MNCC + RPS Largest Gap 12.095 0,4% 

CCAABA Within Aisle MSPCC + RPS Mipoint 15.715 Across Aisle MNLC + RPC Largest Gap 14.957 5,1% 

CCAABB Within Aisle MACC + RPS Composite* 10.058 Within Aisle MACC + RPS Composite* 10.058 0,0% 

CCABAA Within Aisle MSPCC + RPS Largest Gap 16.289 Within Aisle MSPCC + RPS Largest Gap 16.289 0,0% 

CCABAB Within Aisle MNLC + MNCA Largest Gap 10.772 Within Aisle MSPCC + RPS Largest Gap 10.074 6,9% 

CCABBA Within Aisle MACC + RPS Largest Gap 14.878 Across Aisle MACC + RPS Largest Gap 13.493 10,3% 

CCABBB Within Aisle MACC + RPS Composite* 8.717 Within Aisle MACC + RPS Composite* 8.717 0,0% 

CCBAAA Across Aisle MNCC + MNCA Largest Gap 56.775 Within Aisle MACC + RPS Largest Gap 53.057 7,0% 

CCBAAB Across Aisle MNLC + MNCA Largest Gap 34.154 Within Aisle MNLC + MNCA Largest Gap 32.632 4,7% 

CCBABA Within Aisle MSPCC + RPS Composite* 44.109 Within Aisle MSPCC + RPS Composite* 44.109 0,0% 

CCBABB Within Aisle MNLC + MNCA Composite* 26.874 Within Aisle MNCC + MNCA Composite* 26.697 0,7% 

CCBBAA Within Aisle MNLC + MNCA Largest Gap 44.395 Within Aisle MACC + RPS Largest Gap 44.363 0,1% 

CCBBAB Across Aisle MNCC + MNCA Largest Gap 30.975 Within Aisle MNLC + MNCA Largest Gap 29.871 3,7% 

CCBBBA Within Aisle MNLC + MNCA Composite* 37.724 Within Aisle MSPCC + RPS Composite* 37.676 0,1% 

CCBBBB Within Aisle MNCC + MNCA Composite* 24.260 Across Aisle MNLC + MNCA Composite* 23.910 1,5% 

CCCAAA Within Aisle MSPCC + MNCA Largest Gap 92.743 Within Aisle MNLC + MNCA Largest Gap 92.726 0,0% 

CCCAAB Within Aisle MNLC + MNCA Composite* 50.818 Within Aisle MNLC + MNCA Composite* 50.818 0,0% 

CCCABA Within Aisle MSPCC + MNCA Composite* 75.847 Within Aisle MSPCC + RPS Composite* 75.491 0,5% 

CCCABB Across Aisle MNCC + MNCA Composite* 42.783 Within Aisle MSPCC + RPC Composite* 42.633 0,4% 

CCCBAA Within Aisle MNCC + MNCA Largest Gap 81.935 Within Aisle MNCC + RPS Largest Gap 81.278 0,8% 

CCCBAB Within Aisle MNLC + MNCA Composite* 44.780 Within Aisle MNLC + MNCA Composite* 44.780 0,0% 

CCCBBA Across Aisle MACC + RPS Composite* 65.851 Within Aisle MACC + RPS Composite* 65.817 0,1% 

CCCBBB Within Aisle MSPCC + MNCA Composite* 38.627 Within Aisle MSPCC + MNCA Composite* 38.627 0,0% 

CCDAAA Within Aisle MSPCC + MNCA Largest Gap 137.996 Within Aisle MNLC + RPC Largest Gap 137.880 0,1% 

CCDAAB Within Aisle MNCC + RPC Composite* 59.316 Within Aisle MACC + MNCA Composite* 59.216 0,2% 

CCDABA Across Aisle MNLC + RPC Composite* 111.822 Across Aisle MNCC + RPC Composite* 111.446 0,3% 

CCDABB Within Aisle MNCC + RPC Composite* 55.231 Within Aisle MNLC + RPC Composite* 54.773 0,8% 

CCDBAA Within Aisle MNLC + MNCA Largest Gap 115.401 Within Aisle MNLC + MNCA Composite* 110.745 4,2% 

CCDBAB Within Aisle MNLC + MNCA Composite* 50.784 Within Aisle MNLC + MNCA Composite* 50.784 0,0% 

CCDBBA Within Aisle MNLC + MNCA Composite* 90.090 Within Aisle MNLC + RPC Composite* 89.983 0,1% 

CCDBBB Within Aisle MSPCC + MNCA Composite* 47.457 Within Aisle MSPCC + MNCA Composite* 47.457 0,0% 
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CDAAAA Within Aisle MNLC + MNCA Largest Gap 31.318 Within Aisle MSPCC + RPS Mipoint 29.934 4,6% 

CDAAAB Across Aisle MNCC + MNCA Largest Gap 20.796 Within Aisle MNLC + RPC Largest Gap 19.421 7,1% 

CDAABA Across Aisle MSPCC + RPS Largest Gap 18.813 Across Aisle MSPCC + RPS Largest Gap 18.813 0,0% 

CDAABB Within Aisle MACC + RPS Composite* 15.659 Within Aisle MSPCC + RPS Composite* 15.613 0,3% 

CDABAA Within Aisle MNCC + MNCA Largest Gap 24.661 Within Aisle MSPCC + RPS Largest Gap 24.354 1,3% 

CDABAB Within Aisle MACC + MNCA Largest Gap 16.714 Within Aisle MSPCC + MNCA Largest Gap 16.652 0,4% 

CDABBA Within Aisle MNLC + RPS Largest Gap 20.133 Across Aisle MNLC + RPC Largest Gap 18.192 10,7% 

CDABBB Within Aisle MSPCC + RPS Composite* 13.506 Within Aisle MSPCC + RPS Composite* 13.506 0,0% 

CDBAAA Across Aisle MNLC + MNCA Largest Gap 91.089 Within Aisle MNLC + MNCA Largest Gap 86.814 4,9% 

CDBAAB Across Aisle MNLC + MNCA Largest Gap 60.088 Within Aisle MSPCC + MNCA Largest Gap 57.551 4,4% 

CDBABA Within Aisle MNLC + MNCA Composite* 70.364 Within Aisle MACC + RPS Composite* 69.710 0,9% 

CDBABB Across Aisle MNLC + MNCA Largest Gap 46.337 Across Aisle MNLC + MNCA Composite* 45.093 2,8% 

CDBBAA Across Aisle MNLC + MNCA Largest Gap 80.140 Within Aisle MNLC + MNCA Largest Gap 77.069 4,0% 

CDBBAB Across Aisle MNCC + MNCA Largest Gap 55.908 Within Aisle MSPCC + MNCA Largest Gap 53.521 4,5% 

CDBBBA Across Aisle MNCC + MNCA Composite* 60.267 Across Aisle MNCC + MNCA Composite* 60.267 0,0% 

CDBBBB Across Aisle MSPCC + MNCA Largest Gap 41.584 Across Aisle MSPCC + MNCA Composite* 40.166 3,5% 

CDCAAA Across Aisle MNCC + MNCA Largest Gap 171.350 Within Aisle MNLC + MNCA Largest Gap 163.142 5,0% 

CDCAAB Within Aisle MNCC + MNCA Composite* 93.180 Within Aisle MNCC + MNCA Composite* 93.180 0,0% 

CDCABA Across Aisle MNCC + MNCA Largest Gap 129.544 Within Aisle MACC + RPS Largest Gap 123.436 4,9% 

CDCABB Across Aisle MSPCC + MNCA Largest Gap 79.811 Across Aisle MNLC + MNCA Composite* 77.255 3,3% 

CDCBAA Across Aisle MNCC + MNCA Largest Gap 152.375 Within Aisle MNLC + MNCA Largest Gap 147.090 3,6% 

CDCBAB Within Aisle MSPCC + MNCA Composite* 82.691 Within Aisle MNCC + MNCA Composite* 82.092 0,7% 

CDCBBA Across Aisle MSPCC + RPS Largest Gap 114.204 Within Aisle MSPCC + RPS Largest Gap 109.252 4,5% 

CDCBBB Across Aisle MNLC + MNCA Largest Gap 73.415 Across Aisle MNCC + MNCA Composite* 69.714 5,3% 

CDDAAA Within Aisle MSPCC + MNCA Largest Gap 252.178 Within Aisle MNCC + MNCA Largest Gap 251.915 0,1% 

CDDAAB Within Aisle MNLC + RPC Composite* 110.568 Within Aisle MNLC + RPC Composite* 110.568 0,0% 

CDDABA Across Aisle MNLC + RPC Largest Gap 194.595 Within Aisle MSPCC + RPS Largest Gap 189.419 2,7% 

CDDABB Across Aisle MACC + RPC Composite* 103.436 Within Aisle MACC + RPC Composite* 100.688 2,7% 

CDDBAA Within Aisle MNLC + MNCA Largest Gap 213.388 Within Aisle MNLC + MNCA Composite* 205.718 3,7% 

CDDBAB Within Aisle MNCC + MNCA Composite* 94.746 Within Aisle MSPCC + MNCA Composite* 94.575 0,2% 

CDDBBA Within Aisle MNLC + MNCA Largest Gap 162.205 Within Aisle MNLC + RPC Largest Gap 161.976 0,1% 

CDDBBB Within Aisle MACC + RPC Composite* 88.289 Within Aisle MNLC + RPC Composite* 87.939 0,4% 


